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Abstract

The weight spectra (i.e. the lists of all possible weights) of the Reed-Muller codes RM(r,m), of
length 2m and order r, are unknown for r ∈ {3, . . . ,m−5} (and m large enough). Those of RM(m−
4,m) and RM(m − 3,m) have been determined very recently (but not the weight distributions,
giving the number of codewords of each weight, which seem out of reach). We determine the weight
spectrum of RM(m − 5,m) for every m ≥ 10. We proceed by first determining the weights in
RM(5, 10). To do this, we construct functions whose weights are in the set {62, 74, 78, 82, 86, 90},
and functions whose weights are all the integers between 94 and 29 − 2 = 510 that are congruent
with 2 modulo 4 (those weights that are divisible by 4 are easier to determine and they are indeed
known). This allows us to determine completely the weight spectrum, thanks to the well-known
result due to Kasami, Tokura and Azumi, which precisely determines those codeword weights in
Reed-Muller codes which lie between the minimum distance d and 2.5 times d, and thanks to the
fact the weight spectrum is symmetric with respect to 29. Then we use this particular weight
spectrum for determining that of RM(m− 5,m), by an induction on m.

This extended abstract is an excerpt of the full paper [3].

1 Introduction

Given 0 ≤ r ≤ m, the Reed-Muller code RM(r,m), of length 2m and order r, is made of all m-variable
Boolean functions f of algebraic degree at most r (or more precisely of the binary vectors of length
2m that are the lists of values of f(x) when x = (x1, . . . , xm) ranges over Fm2 in some fixed order). All
codeword weights in the Reed-Muller codes of length 2m and orders 0, 1, 2,m− 2,m− 1,m are known
(as well as the weight distributions of these codes). They are recalled for instance in [7] and in [4].
The low Hamming weights are also known in all Reed-Muller codes: Kasami and Tokura [5] have shown
that, for r ≥ 2, the only Hamming weights in RM(r,m) occurring in the range [2m−r; 2m−r+1[ are of
the form 2m−r+1 − 2m−r+1−i where i ≤ max(min(m− r, r), m−r+2

2 ).

Kasami, Tokura and Azumi determined later in [6] all the weights lying between the minimum
distance d = 2m−r and 2.5 times d. The functions having such weights are characterized in this
reference (all weights are described at pages 392 and following of the reference, and the corresponding
functions are described under some conditions in its Table I).

The weight spectra (i.e., the sets of all possible codeword weights) of the codesRM(r,m) are unknown
for 3 ≤ r ≤ m − 5 (and therefore, their weight distributions are also unknown) but they have been
recently determined in [4] for r = m−4,m−3, thanks to the fact that there is a simple way to determine
many weights in RM(r,m) from the weights in RM(r− 1,m− 1); the weight spectra of RM(m− c,m)
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were then deduced for c = 3, 4, thanks to the Kasami-Tokura’s results [5], which allowed to know that
the numbers missing in the obtained lists could not be weights in these codes.

Reference [4] could not address the cases c ≥ 5, mainly because the weights that are not divisible by
4 in RM(5, 10) could not be determined. In the present paper, we solve the case c = 5, by constructing
codewords in RM(5, 10) achieving all the weights allowed by [6] and all those that are larger than 2.5d
and smaller than 2m−1, and thanks to an induction on m.

2 Preliminaries

The Hamming weight (in brief, the weight) of a binary vector x = (x1, . . . , xn) ∈ Fn2 is the size of its
support {i ∈ {1, . . . , n};xi 6= 0}. The Hamming distance between two vectors in Fn2 is the weight of
their difference (that is, of their sum). Hence, since m-variable Boolean functions can be identified with
binary vectors of length n = 2m, the Hamming weight of an m-variable Boolean function f is the size
of its support {x ∈ Fm2 ; f(x) 6= 0}, and the Hamming distance between two Boolean functions is the
weight of their sum. A binary linear code of length n is an F2-subspace of Fn2 . This allows to define its
dimension (as an F2-vector space). Its minimum distance is the minimum Hamming distance between
distinct codewords, that is (thanks to the linearity of the code) the minimum Hamming weight of the
nonzero codewords.

The set of the codeword weights of a given linear code C will be called the weight spectrum of C,
and for simplicity, we will sometimes write “the weights of C” instead of “the weights of the codewords
in C” for the elements of its weight spectrum. The weight distribution of the code is the list of the
numbers Ai, where Ai equals the number of codewords of weight i for i ∈ {0, . . . , n}.

Given two integers m and r ∈ {0, . . . ,m}, the Reed Muller code RM(r,m) of length n = 2m and
order r is defined in terms of Boolean functions (see [7]): each m-variable Boolean function f : Fm2 7→ F2

admits a unique representation as a polynomial in F2[x1, . . . , xm]/(x21 + x1, . . . , x
2
m + xm), called the

algebraic normal form (ANF) of f . We choose an order on Fm2 , that is, we write Fm2 = {P1,P2, . . . ,Pn},
and we denote by ev the evaluation map from the space of Boolean functions to Fn2 by the rule
ev(f) = (f(P1), . . . , f(Pn)). Then RM(r,m) equals {ev(f) | f ∈ Bm and deg(f) ≤ r}, where Bm is
the vector space of all m-variable Boolean functions and deg(f), called the algebraic degree of f , is the
(global) degree of the ANF of f . Boolean function f has an odd Hamming weight if and only if it has
(maximal) algebraic degree m.

The dimension of RM(r,m) equals
r∑
i=0

(
m
i

)
and its minimum distance equals 2m−r. The minimum

weight codewords are the indicators of the (m − r)-dimensional affine subspaces of Fm2 ; up to affine
equivalence, they equal

∏r
i=1 xi (two Boolean functions are called affine equivalent if one equals the

composition of the other by an affine permutation).
The McEliece theorem gives a divisibility lower bound on the weights in RM(r,m):

Theorem 1 (McEliece divisiblity theorem). [8] The weights in RM(r,m) are multiples of 2b
m−1

r
c.

This bound is tight, as shown in [1]; more precisely, for each pair (r,m), there is at least one codeword

of RM(r,m) with weight equal to 2b
m−1

r
c times an odd integer.

Another important result on Reed-Muller codes is the following (already evoked in the introduction):

Theorem 2 (Kasami-Tokura). [5] Let w be a weight of some nonzero codeword in RM(r,m) in the
range 2m−r ≤ w < 2m−r+1. Let α = min(r,m − r), and β = m−r+2

2 . The weight w is of the form
w = 2m−r+1 − 2m−r+1−i, for i in the range 1 ≤ i ≤ max(α, β). Conversely, for any such i, there is a
w of that form in the range 2m−r ≤ w < 2m−r+1.

This result has been extended in [6] into the characterization of all the weights of RM(r,m) that are
in the range 2m−r ≤ w < 2m−r+1 + 2m−r−1 (i.e. that lie between the minimum distance of the code
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and 2.5 times the minimum distance). It is impossible to summarize these results; we shall refer below
to the pages in this reference where the results that we shall need can be found.

Notation: for every n, we denote respectively by 0n and 1n the all-0 and all-1 vectors of length n.

3 The weights of the Reed-Muller codes of length 2m and order m− 5

It is well-known that we obtain all the codewords in RM(r,m) by concatenating any codeword u of
RM(r,m− 1) and the sum of u and of a codeword v of RM(r − 1,m− 1) (this is called the (u, u+ v)
construction of RM(r,m), see [7]). If we take u also in RM(r − 1,m − 1), then u and u + v range
freely and independently in RM(r − 1,m − 1). Hence, RM(r,m) contains the concatenations of any
two codewords of RM(r − 1,m − 1) (which can also be seen directly by considering functions of the
form u(x′) +xmv(x′), where u and v are two (m−1)-variable Boolean functions of algebraic degrees at
most r− 1 and x′ ∈ Fm−12 ). This implies that the sums of two weights in RM(r− 1,m− 1) are weights
in RM(r,m). This allowed in [4] to determine the weights of RM(3, 6) and RM(4, 8) and deduce by
induction the weights of RM(m− c,m) when c ≤ 4.

But the weights in RM(m − 5,m) could not be determined. This would have needed to determine
the weights in RM(5, 10). Indeed, determining the weights in the codes RM(m − c,m) for a given
c > 0 needs in practice, for starting an induction, to determine the weights in the code RM(m− c,m)

for which m is the smallest such that
⌊
m−1
m−c

⌋
(in the McEliece divisiblity theorem) has value 1, that

is, m = 2c = 2r (in which case the condition i ≤ max(min(m− r, r), m−r+2
2 ) of Kasami-Tokura writes

i ≤ c). Taking m smaller than 2c allows by computing sums of two weights in RM(m − c,m) to
obtain only weights that are divisible by 4 in RM(m+ 1− c,m+ 1). And only a half of the weights of
RM(5, 10) could be determined in [4] (almost all weights that are not divisible by 4 missing).

For the reasons presented above, determining the weights in RM(r, 2r) that are divisible by 4 is
easier than determining those which are not divisible by 4 (and divisible by 2): many of the former
can be obtained by adding two weights from RM(r − 1, 2r − 1) if these weights are known, or from
RM(r− j, 2r− j) where j > 1 is the smallest value for which the weights are known. This is how they
have been determined in [4] for RM(5, 10).
Let us then work on the most difficult part: the weights that are not divisible by 4.

3.1 The weights in RM(5, 10) that are congruent with 2 mod 4

Since using a computer for obtaining the weight spectrum of RM(5, 10) seems out of reach, we need to
mathematically construct Boolean functions in 10 variables and of algebraic degree at most 5, whose
Hamming weights can be determined and cover as many values allowed by [6] as possible (and are
congruent with 2 mod 4). Of course, we only need to determine the weights up to 2m−1 − 2, since
Reed-Muller codes being invariant by the complementation of their codewords to the all-one vector,
their weight spectra are invariant by complement to 2m.
We shall use the structure of the so-called Maiorana-McFarland functions (see e.g. [2]). Let m be a
positive integer. An m-variable Boolean function is Maiorana-McFarland if there exist 2 ≤ k ≤ m,
φ : Fm−k2 7→ Fk2 and g : Fm−k2 7→ F2 such that:

f(x,y) = x · φ(y) + g(y); x ∈ Fk2, y ∈ Fm−k2 ,

where (x,y) is the concatenation of the vectors x = (x1, . . . , xk) and y = (y1, . . . , ym−k) and “·” is an
inner product in Fk2 (for instance the so-called usual inner product x · x′ = x1x

′
1 + · · ·+ xkx

′
k, where of

course x′ = (x′1, . . . , x
′
k)). We assume k ≥ 2 because for k = 1, the corresponding Maiorana-McFarland

functions are all m-variable Boolean functions, and the Maiorana-McFarland structure is then weak
and does not help the study.
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Such function f belongs to RM(r,m) if and only if φ has algebraic degree at most r− 1 (that is, all
its coordinate functions have algebraic degree at most r − 1) and g has algebraic degree at most r.

Considering the value Wf (0k,0m−k) of the Walsh transform Wf of function f (see e.g. [2]), we have:

2m − 2wH(f) = Wf (0k,0m−k) :=∑
x∈Fk

2 ,y∈F
m−k
2

(−1)x·φ(y)+g(y) =

∑
y∈Fm−k

2

(−1)g(y)
∑
x∈Fk

2

(−1)x·φ(y)

 = 2k
∑

y∈φ−1(0k)

(−1)g(y),

where φ−1(0k) denotes the pre-image by φ of the zero vector in Fk2. Hence:

wH(f) = 2m−1 − 2k−1
∑

y∈φ−1(0k)

(−1)g(y). (1)

We want this number to be congruent with 2 mod 4, which obliges to take k = 2.
Let φ1, φ2 be the two coordinate functions of φ. We have φ−1(02) = {y ∈ Fm−22 ;φ1(y) = φ2(y) = 0}.

The indicator function of φ−1(02) equals then (φ1(y) + 1)(φ2(y) + 1). According to what we recalled
in Section 2, a Boolean function in m − 2 variables has an odd Hamming weight if and only if it has
(maximal) algebraic degree m − 2. Hence, φ−1(02) has an odd size if and only if φ1φ2 + φ1 + φ2 has
algebraic degree m− 2.
We fix now m = 10 and r = 5 (c = 5). The fact that φ1φ2 has algebraic degree m− 2 = 8 implies that
φ1 and φ2 both have algebraic degree 4 exactly.
We wish that φ−1(02) is as large as possible (then we can try to reach as many weights as possible
with f by visiting as many Boolean functions g as possible). For this, we wish that the co-support of
φ1 (that is, the complement of its support) is as large as possible. We take then for φ1 a minimum
weight codeword in RM(4, 8). Up to affine equivalence, we can take φ1(y) =

∏4
j=1 yj (see [7, 2]). This

φ1 being chosen, we want that φ1φ2 has the algebraic degree 8 and that φ−1(02) has a maximum size.
Let us then take φ2(y) =

∏8
j=5 yj .

3.1.1 The weights achievable by f when m = 10, k = 2, φ1(y) =
∏4
j=1 yj and φ2(y) =

∏8
j=5 yj

With such choices, we have:

φ−1(02) =
{
y ∈ F8

2;

4∏
j=1

yj =

8∏
j=5

yj = 0
}

= (F4
2 \ {14})× (F4

2 \ {14}).

Then, according to (1), denoting by g′ the restriction of g to (F4
2 \ {14})2, by g1 the restriction of g

to {14} × F4
2 and by g2 the restriction of g to F4

2 × {14}, we have:

wH(f) = 29 − 2
∑

y∈(F4
2\{14})2

(−1)g(y)

= 29 − 2
(

152 − 2wH(g′)
)

= 62 + 4wH(g′) (2)

= 62 + 4wH(g)− 4wH(g1)− 4wH(g2) + 4 g(18).

The detailed explanations on how we obtained all the possible weights of g′ when g belongs to
RM(5, 8) can be found at URL:
https://d197for5662m48.cloudfront.net/documents/publicationstatus/171039/preprint_pdf/

5e3b1a34b6f649e6b532796b16033485.pdf

https://d197for5662m48.cloudfront.net/documents/publicationstatus/171039/preprint_pdf/5e3b1a34b6f649e6b532796b16033485.pdf
https://d197for5662m48.cloudfront.net/documents/publicationstatus/171039/preprint_pdf/5e3b1a34b6f649e6b532796b16033485.pdf
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The weights congruent with 2 mod 4 between 62 and 94 Considering the case where g has
minimum nonzero weight 8 (i.e. g is the indicator of a 3-dimensional affine space A), and considering
all possible cases, we have:

Lemma 3. Let:

f(x,y) = x1

4∏
j=1

yj + x2

8∏
j=5

yj + g(y); x ∈ F2
2, y ∈ F8

2,

where g is any minimum weight codeword in RM(5, 8). Then the set of weights of such codewords of
RM(5, 10) includes {62, 74, 78, 82, 86, 90, 94} and covers all the weights in RM(5, 10) that are congruent
with 2 modulo 4 and between 62 and 94.

The weights congruent with 2 mod 4 between 96 and 126 Choosing now for g a codeword of
RM(5, 8) having the three weights that come immediately after 8 when visiting the weight spectrum
in ascending order, that is 16− 4 = 12, 16− 2 = 14 and 16 itself, we obtain:

Lemma 4. Let f be defined as in Lemma 3, where g is the sum of two minimum weight codewords in
RM(5, 8). Then the set of weights of such codewords of RM(5, 10) includes additionally to Lemma 3,
the numbers: 98, 102, 106, 110, 114, 118, 122, 126, and covers then all the weights in RM(5, 10) that are
congruent with 2 modulo 4 and which lie between 98 and 126.

The weights congruent with 2 mod 4 between 130 and 226 We now need to take a function
g such that the weight w of g′ is between 17 and 41. We have:

Lemma 5. Let f be defined as in Lemma 3, where g is the sum of three to six minimum weight
codewords in RM(5, 8) with disjoint supports. Then the set of weights of such codewords of RM(5, 10)
includes additionally to Lemmas 3 and 4, all the numbers congruent with 2 modulo 4 and lying between
130 and 226.

All remaining weights congruent with 2 mod 4

Lemma 6. Let g be the 8-variable Maiorana-McFarland function:

g(z, t) = z · ψ(t) + h(t); z, t ∈ F4
2,

where ψ is any function from F4
2 to F4

2 and h is any Boolean function over F4
2. Let:

f(x, z, t) = x1

4∏
j=1

(zj + 1) + x2

4∏
j=1

(tj + 1) + g(z, t);

x ∈ F2
2, z, t ∈ F4

2.

Then the algebraic degree of any such 10-variable Boolean function f is at most 5 and the set of the
weights of such functions includes all those integers between 230 and 510 that are congruent with 2
modulo 4.

3.2 The weight spectrum of RM(5, 10)

Proposition 7. The set of all weights in RM(5, 10) equals {0, 32, 48, 56, 60, 62,
64, 68, 72 + 2i, 210− 68, 210− 64, 210− 62, 210− 60, 210− 56, 210− 48, 210− 32, 210}, where i ranges over
the set of consecutive integers from 0 to 29 − 72.

Proof. The result is deduced from Lemmas 3,4,5,6, the results of [5], and the facts that the spectrum
is symmetric with respect to 512 and that, according to [4], all the numbers divisible by 4 between 56
and 210 − 56 = 968 are weights in RM(5, 10). �
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3.3 The weight spectrum of every code RM(m− 5,m) for m ≥ 10

Theorem 8. For every m ≥ 10, the set of all weights in RM(m−5,m) equals {0, 32, 48, 56, 60, 62, 64, 68, 72+
2i, 2m − 68, 2m − 64, 2m − 62, 2m − 60, 2m − 56, 2m − 48, 2m − 32, 2m}, where i ranges over the set of
consecutive integers from 0 to 2m−1 − 72.

The proof by an induction on m ≥ 10 is omitted because of length limitation.

Open question: Let c be any positive integer. For m ≥ 2c, is the weight spectrum of RM(m− c,m) of
the form:

{0} ∪A ∪B ∪ C ∪B ∪A ∪ {2m}?

where:

• A ⊆ [2c, 2c+1], is given by Kasami and Tokura [5],

• B ⊆ [2c+1, 2c+1 + 2c−1], is given by Kasami, Tokura, and Azumi in [6, Page 392 and foll.],

• C ⊆ [2c+1 + 2c−1, 2m − 2c+1 − 2c−1], consists of all consecutive even integers,

• A stands for the complement to 2m of A, and B stands for the complement to 2m of B.
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