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Abstract

We follow works of Whitney, Farrell, and Morgan and Delbourgo, to express the coefficients
of the chromatic polynomial P (G;λ) of a graph G in the variable λ in terms of the number of
(induced) subgraphs of G: the coefficient of λ|G|−p is given as a polynomial on variables

(
xi

k

)
with

integer coefficients, and where the xi are the number of induced copies of a 2–connected graphs
with ≤ p + 1 vertices that are not formed by gluing two 2–connected graphs through a common
clique. Our main contribution is that the finding of these expressions can be systematised, and that
they do not depend on the 2–connected graphs with ≤ p+ 1 vertices that are formed by gluing two
2–connected graphs through a common clique. As an application, we give an alternative proof of
the chromatic uniqueness of the wheels with an odd number of vertices.

1 Introduction

The chromatic polynomial of a graph G, P (G;λ), gives, as its evaluations on the positive integers n,
the number of proper colourings of a graph using n colours. In particular, the chromatic polynomial
has 0, 1, . . . , χ(G) − 1 as roots. In general, it can be defined as the polynomial that is λ on a graph
on a single vertex, 0 if the graph has any loops, multiplicative over connected components, and such
that P (G;λ) = P (G− e;λ)−P (G/e;λ) when e is a non-loop edge. In general, using [6], the chromatic
polynomial can be given as:

P (G;λ) =
∑

A⊆E(G)

(−1)|A|λk(A) (1)

where k(A) is the number of components of the graph G = (V (G), A). In particular, the coefficient

of λ|V (G)|−p is given, up to a sign, by the number of subsets of edges spanning a subgraph of G with
|V (G)|−p components. Whitney [6] gave the following expression for chromatic polynomial of a graph
G of order n as P (G;λ) =

∑
i,j(−1)i+jmijλ

n−i where mij is the number of 2-connected subgraphs

of G of rank i and nullity j. He [7] showed that this could be expressed as P (G;λ) =
∑

imiλ
n−i

where mi =
∑

j(−1)i+jmij and (−1)imi is the number of subgraphs of G with i edges and containing

no broken circuits. Building on this work, Farrell [4] showed that the coefficients of the chromatic
polynomial could be expressed as

P (G;λ) =
∑
i

cn−iλ
n−i (2)

where the cn−i is an expression in the counts of 2-connected induced subgraphs of G (we count
subgraphs and induced subgraphs in terms of edge sets of G, see (3)), however, the arguments for the
general case would be quite involved.
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In the main result of this work, Theorem 2, we give a more precise description of how cn−i can be
written as an expression in the counts of 2-connected induced subgraphs, and also allows to easily
implement an algorithm that finds such expression: the complexity of the algorithm for n− i depends
on the cube of the number of connected graphs on i+ 1 vertices (see Section 3 below).
Given A, a set of edges of G, the graph (V (A), A) is the graph with A as its set of edges, and where

V (A) = {v ∈ V (G) | ∃e ∈ A, v adjacent to e} is its set of edges. Given a graph H, we let

sube(H,G) =
∑

A⊆E(G)

1(V (A),A) isomorphic to H

∥∥∥ inde(H,G) =
∑

A⊆E(G)

1G restricted to V (A) isomorphic to H (3)

be, respectively, the number of subgraphs isomorphic to H in G and the number of induced subgraphs
isomorphic to H in G.1 Regarding the previous work on some specific coefficients, the following are
found in [4]:

Theorem 1. [4, Thm 1, 2] The coefficients cn−3, cn−4 from (2) in P (G;λ) equals,2, respectively

−
(
m

3

)
+ (m− 2)t+ C4 − 2K4 := −

(
inde(K2, G)

3

)
+ (inde(K2, G)− 2)inde(K3, G) + inde(C4, G)− 2inde(K4, G) ,(

m

4

)
−
(
m− 2

2

)
t+

(
t

2

)
− (m− 3) · C4 + (2m− 9) ·K4

− 6 · inde(K5, G)− inde(C5, G) + inde(θ2,2,2, G) + 3inde(W5, G) + 2inde(W5 \ {spoke}, G) .

At this point it is worth observing that Whitney’s [6] main interest was to give a general account
on the expressions that appear in the general coefficient of λn−i in terms of 2-connected subgraphs,
while in [3, 4] the primary focus was to give an expression in terms of induced subgraphs and with
the minimum number of terms as possible; the price to pay was that only the first terms could be
computed (with reasonable effort) exactly. In the proof of Theorem 2, we follow the arguments of both
[6, 3, 4] with the aim of giving a general account of the coefficients (in the style of [6]), but in terms of
induced subgraphs (as in [3, 4]).

Remark. The fact that coefficients cn−i, and, more generally, the whole chromatic polynomial of
G, depends on the counts of its finite subgraphs has been extensively used in the literature, see, for
instance [1, 2, 5].

2 Our result

Let B denote the set of 2–connected graphs. Consider the multiset of elements of B, T = {T1, ..., T1, ...,
Tr, ..., Tr}, with ti copies of Ti. Then Γ(T ) = (T1, . . . , Tr) provides a sequence of elements of T without
repetition, n(T ) = (t1, . . . , tr) and v(T ) = (|V (T1)|, . . . , |V (Tr)|) give, respectively, the sequence of the
number of copies that each Ti has in T and the number of vertices of each graph in T (these two
sequences have an ordering consistent with Γ(T )). Note that a multiset of graphs, such as T can be
viewed as a graph, denoted as G(T ), with vertex set ⊔T∈T V (T ) and edge set ⊔T∈T E(T ), thus having
t1 + . . .+ tr connected components.

A 2-connected graph G = (V,E) is said to be clique-separable if there is a partition of V into three
non-empty vertex sets V = V1⊔V2⊔V3 such that there are no edges between V1 and V3, V2 is a complete
graph on |V2| ≥ 2 vertices, V1 ⊔ V2 and V3 ⊔ V2 induce two 2–connected graphs with ≥ |V2|+1 vertices
each.

1The number of subgraphs (induced subgraphs) usually refers to the number of injective graph homomorphisms (injec-
tive and also preserving non-edges). We are considering the subgraphs as subsets of edges; thus the number of subgraphs
of C4 in C4 is 1, while the number of subgraphs of C4 in C4 with the usual understanding is 8.

2Note there is a typographical error in [4, Thm 2], namely “−
(
t
2

)
” should actually be “+

(
t
2

)
”.
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Theorem 2. The chromatic polynomial P (G;λ) can be computed as

P (G;λ) =

|G|∑
p=0

 ∑
T multiset of B

(v(T )−(1,...,1))·n(T )≤p

cp(T )
∏

i∈[dim(n(T ))]

(
inde(Γ(T )i, G)

n(T )i

)λ|G|−p (4)

P (G;λ) =

|G|∑
p=0

 ∑
T multiset of B

(v(T )−(1,...,1))·n(T )≤p

sp(T )
∏

i∈[dim(n(T ))]

(
sube(Γ(T )i, G)

n(T )i

)λ|G|−p (5)

where: (v(T ) − (1, . . . , 1)) · n(T ) is the usual scalar product of two vectors, inde(·, G) and sube(·, G)
are given by (3), both cp(T ) and sp(T ) are integers depending solely on T and p (not on G), and
|G| := |V (G)|. Furthermore:

(i) cp(T ) = 0 if (v(T )− (1, . . . , 1)) · n(T ) > p

(ii) cp(T ) = 0 if a T ∈ T is clique-separable

(iii) if T = {T} and |T | = p+ 1,

cp(T ) =
∑

A⊆E(T ), (V (T ),A) 2–connected

(−1)|A|

(iv) if T = {T} and |T | = p+ 1 and i ≥ 1,

cp+i(T ) = −
∑

T ′ multiset of B, T ′ ̸=T
T ′ containing subgraphs of T

cp+i(T ′)
∏

j∈[dim(n(T ′))]

(
inde(Γ(T ′)j , T )

n(T ′)j

)

(v) When |T | = t ≥ 2 and for each i ≥ 0 we have:

c(v(T )−(1,...,1))·n(T )+i(T ) =
∑

k1+...+kt=i, ks≥0

∏
Tt∈T

c|Tt|−1+kt
({Tt}) .

(vi) For each p ≥ 0 and T multiset of B, cp(T ) are determined by (i),(ii),(iii), (iv), (v).

Before proceeding to the proof, we highlight that, in the proof and in the statement of Theorem 2,
the H in (3) that are used are 2–connected.

Sketch of the proof. First we show (5) by translating the summation over edges as a sum of
“independent” combinations of 2–connected blocks which would form the subgraph in question. Since
we are considering these 2–connected blocks as being combined independently, we should substract the
instances where these independent 2–connected blocks are combined into larger 2–connected blocks,
such as when 3 edges are combined to form a triangle. Once (5) is obtained, we show (4) using that the
number of instances of a subgraph T can be counted using induced graphs that are supergraphs of T
on the same vertex set. We complete the argument using Vandermonde’s involution formula together
with Pólya and Ostrowski result from 1920 which implies that the polynomials

(
mx
k

)
with positive

integers m and k and variable x can be written in terms of
(
x
i

)
, 1 ≤ i ≤ k using integer coefficients.

Part (iii) follows by examining the contribution to cn−i in (2) by only one 2–connected block with i+1
vertices. Parts (ii), (v), and (iv) follow by the multiplicative properties of the chromatic polynomial
over 2–connected components, and its behaviour over clique-join graphs. In particular, given (4) and
the cp(T ) as unknowns we consider certain chromatic polynomials which, when closely examined, gives
the equations and relations described in (ii), (v), and (iv). These constructions are described below.
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Proof of (ii). Let A be a 2-connected graph which is a clique-join of two other graphs (so it is
clique-separable). The proof goes by induction on the number of edges and vertices of A. Let A1, A2

be the two 2-connected components that are joined by a clique. Then we consider G1 the graph formed
by 5 vertex-disjoint copies of A and G2 the graph obtained by the disjoint union of: 2 vertex-disjoint
copies of A1, 2 vertex-disjoint copies of A2, and a graph formed by 3 copies of A1 and 3 copies of A2

on the same clique (and in such a way that the number of induced copies of A in the resulting graph
is 9 by choosing one of the copies of A1 and one of the copies of A2, independently). The chromatic
polynomial of G1 and G2 is the same in both cases:

(
P (A1;λ)P (A2;λ)

λ(λ− 1) · · · (λ− q)

)5

=

(
P (A1;λ)P (A2;λ)

λ(λ−1)···(λ−q)

)(
P (A1;λ)P (A2;λ)

λ(λ−1)···(λ−q)

)
λ(λ−1)···(λ−q)

(
P (A1;λ)P (A2;λ)
λ(λ−1)···(λ−q)

)
λ(λ− 1) · · · (λ− q)

P (A1;λ)
2P (A2;λ)

2

where q + 1 is the size of the clique by which they are joined in A. Moreover:

• If a 2-connected graph T is an induced graph of one of the parts (either a subgraph of A1 or a
subgraph of A2), then the number of induced copies of T in G1 and in G2 (counted as in (3)) is
the same.

• There are strictly more induced copies of A in G2 than in the former (5 in G1 versus 9 in G2 if
we assume A1 and A2 are different, otherwise is 5 versus at least 9 or at most

(
6
2

)
= 15 depending

on the join interaction of A1 and A2 with respect to the common clique).

• Any induced copy of a 2–connected graph that contains a part in A1 and a part of A2 (and a
strict induced subgraph of A) would consists on two graphs joined through a clique, and thus the
corresponding coefficient in any chromatic polynomial and for any monomial is zero by induction.

By the previous argument for any induced graph completely contained in A1 or A2 the induced graph
accounts are the same, and any graph that contains a part in A1 and a part in A2 is a clique-join
and thus, by an inductive argument, does not appear in the summation making up the coefficients.
Therefore, the fact that there are strictly more induced copies of A in G2 than in G1 implies that
the corresponding coefficient of A for λ in P (A;λ) should be zero. By adding some isolated vertices,
we can conclude the same for all the coefficients involving the number of induced copies of A, when
T = {A, . . . , A}, are zero. For a general multiset T containing A, it follows from (v) and the fact that
all the coefficients are zero when T = {A} as we have just shown.
Proof of (iv). Consider the chromatic polynomial of T , a 2–connected graph and i ≥ 1 isolated

vertices; T ⊔ {vj}j∈[i]. Then, P (T ⊔ {vj}j∈[i];λ) = P (T ;λ)λi. From (4), we can determine that
there are no 2–connected components with larger number of vertices (or edges) than T , so all the

terms
(inde(Γ(T )i,T⊔{vj}j∈[i])

n(T )i

)
are zero unless Γ(T )i is an induced subgraph of T . In particular, the only

coefficients cp(T ) that are multiplying non-zero terms of the type
∏

j∈[dim(n(T ))]

(inde(Γ(T )j ,G)
n(T )j

)
are those

where all the graphs in T are induced subgraphs of T . This implies that, if p = |T | − 1 + i we have

0 =

 ∑
T multiset of B, (v(T )−(1,...,1))·n(T )≤|T |−1+i

T containing only induced subgraphs of T

c|T |−1+i(T )
∏

j∈[dim(n(T ))]

(
inde(Γ(T )j , G)

n(T )j

) (6)

where the zero comes from the fact that all the coefficients multiplying monomials from P (T ⊔
{vj}j∈[i];λ) of degree < i + 1 are zero, which implies that when p = |T | − 1 + i the coefficient of

λ|T ]+i−|T |+1−i = 0. Isolating the term c|T |−1+i(T ) in (6) that is multiplying
(
inde(T, G)

1

)
= 1 gives (iv).

Proof of (v). We have to show that, for each i ≥ 0, c(v(T )−(1,...,1))·n(T )+i(T ) =
∑

k1+...+kt=i,ks≥0, with |T |=t∏
Tj∈T c|Tj |−1+kj ({Tj}). Given T = {T1, . . . , T1, T2, . . . , T2, . . . , Tr, . . . , Tr} with ti copies of each Ti,

consider the chromatic polynomial of G, the graph obtained from the disjoint union of tj copies of
the graph Tj , for each j ∈ [r], and i isolated vertices, so: P (G;λ) = P (⊔j∈[r],s∈[ti]Tj ⊔ {v}j∈[i];λ) =
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λi
∏

j∈[r] P (Tj ;λ)
tj . By the disjoint unionness of G (in terms of the graphs of T ), for each Tj ∈ B,

inde(Tj , G) =
∑

T∈T inde(Tj , T ). Using Vandermonde’s involution formula to the latter, the monomial

involving the coefficient c(v(T )−(1,...,1))·n(T )+i(T ) which multiplies the term
∏

j∈[dim(n(T ))]

(inde(Γ(T )j ,G)
n(T )j

)
=∏

j∈[dim(n(T ))]

(
inde(Tj ,G)

tj

)
depends on the multiplication of the terms where

(
inde(Ti,Ti)

1

)
from the poly-

nomial P (Ti;λ),
3 while making that the powers of the λ coincide at the end. Thus the formula (v)

follows.

3 Comments and consequences of our main result

On the cp(T ) of chromatically equivalent graphs. Observing Theorem 2, it is natural to ask the
relationship between pairs of graphs G and H, their chromatic polynomials P (G;λ) and P (H;λ), and
the relationship between their corresponding sequences {cp(G)}p and {cp(H)}p. Even though there is
obviously a relation, it is non-trivial. In particular, there are pairs of graphs with the same sequences
{cp(G)}p = {cp(H)}p, yet P (G;λ) ̸= P (H;λ), for instance, any pair of graphs that are clique-joins,
yet they have different chromatic polynomials (even perhaps they have a different number of vertices).
On the other hand, the following two graphs, shown as Figure 1 have the same chromatic polynomial:

Figure 1: Graph G on the left. Graph H on the right

P (G;λ) = P (H;λ) = λ7 − 17λ6 +118λ5 − 425λ4 +829λ3 − 818λ2 +312λ, yet their sequences {cp(G)}p
differ. Indeed, G from Figure 1 is clique-separable (vertices V1 = {top vertex}, V2 = {middle four}, V3 =
{lower two}, so all its coefficients are 0, however, H is not clique-separable, and in particular, it has a
non-zero coefficient c6(H) = 30.

Algorithmic questions. Expression (4) in Theorem 2 can be used in order to find cn−p(T ) as
follows. One can set a linear system with one equation for each connected graph G on p + 1 vertices
using the value of the coefficient of λn−p in the expression for P (G;λ), with the unknown coefficients
cn−p(T ) in the expression (4) as variables, and with the corresponding expression of the number of
induced subgraphs as coefficients of the equation (for each graph G, these numbers can be computed).
The number of connected graphs on p+ 1 vertices is denoted by kp. kp is then an upper bound on the
number of variables, and on the number of equations as well. Thus the linear system can be solved in
time O(k2p). Also, for each graph G, its linear equation can be set up in time 2|E(G)| times checking

the 2–connected isomorphism type of the subset of edges; since 2|E(G)| = O(kp) and checking the 2–
connected isomorphism has O(p!kp) = O(k2p) complexity, a relatively easy algorithm on time O(k3p) can
be implemented.

On wheels. As W2n−1 are 3-colourable, no induced copy of K4 can be found in a graph chromatically
equivalent to them. Then Lemma 3 gives an alternative proof that W2n−1 are chromatically unique [8].

Lemma 3. If G is a graph on n ≥ 5 vertices and chromatically equivalent to the wheel Wn (that is,
P (G;λ) = P (Wn;λ)), and G ̸∼= Wn, then G has at least 2 induced C4 and an induced K4.

3The lower term of the binomial coefficient cannot be strictly larger, as there are no sufficient copies in Ti. If it is
strictly smaller, then will be accounted by some

(
inde(Tj ,Tj)

i

)
where i is strictly larger. Further, for

(
inde(Ti,Tj)

t

)
with i ̸= j,

the only way of carrying such term is when the product picks another
(
inde(Ta,Tb)

t

)
, with i > 0 and where Ta is not a

subgraph of Tb, and thus the term will become 0.
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Proof. G and Wn should have the same number of vertices. Since the chromatic coefficients of λn−1,
and λn−2 are the same for G and Wn, they have the same number of edges and triangles.
Since any induced 2–connected subgraph of the wheel with n vertices (maximal induced cycle of size

n−1) with ≥ 4 and ≤ n−2 vertices is a clique-join, we may use Theorem 2 (ii) and (4), the expressions
configuring the coefficients of λn−p for p ∈ [3, n − 3] for the wheel only depends on the number of
triangles and number of edges, and thus these expressions gets balanced with those parts from G (as
they have the same number of triangles and edges).
Now, since the chromatic number of the wheels is 4, there are no induced copies of Kj , j ≥ 5 in

G. By Theorem 2 or Theorem 1, the graph G will have induced K4 if and only if it has induced C4’s;
indeed, when n ≥ 6 is due to Theorem 1 and the fact that Wn has neither induced C4 nor K4, and thus
these numbers should balance in the coefficient λn−3 as the coefficient also depends on the number of
triangles and edges, but those two numbers are the same for G and for Wn (when n = 5, G could have
a C4 without a K4 but then it would be the wheel as those two have the same number of triangles and
triangles all should be incident with the last vertex, and thus the claim follows).

Assume for a contradiction that G has no induced C4, C5, . . . , Ck, for some k ≥ 4, then any induced
2–connected graph on ≤ k vertices has only triangles, and all the induced cycles have a chord. In
particular, all of these graphs are chordal graphs. Thus, it has a perfect elimination ordering, meaning
that the neighbourhood of the any removed vertex in the perfect elimination ordering is a clique. This
means that, either the graph is Ki, i ≥ 4, or it is a clique-join. Since G, n ≥ 5 has no copies of Ki,
i ≥ 5, the only remaining case is for K4. However, if it has a K4, then G should also contain an
induced C4 (as claimed in the previous paragraph). Now let us focus on the coefficient cn−k. Consider
an induced 2-connected subgraph of G with k + 1 vertices; if it is not a chordal graph and it is not
Ck+1, then it contains an induced cycle on ≤ k vertices, which is a contradiction with the assumption.
Otherwise, it is a chordal graph, and the perfect elimination ordering shows that it is either a clique
on k + 1 vertices, or a clique-join, thus not counting towards cn−k. In particular, it can only be Ck+1,
but if n > k + 2, then Wn has no induced cycle of length Ck+1 and the only contributions towards
cn−k are from edges and triangles, which is the same as for G. Since Ck+1 has a non-zero coefficient by
Theorem 2 (iii), then G cannot have an induced copy of Ck+1 for otherwise, under the assumption of
having no C4, C5, . . . , Ck, then it would not have the same chromatic polynomial as Wn. This process
can be run until c2 for which a single copy of Cn−1 appears in Wn, thus by the previous argument
forcing a single copy of Cn−1 in G as well. Since both have the same number of triangles (n−1 induced
triangles and 2(n − 1) edges is the wheel on n vertices), they end up being the same graph, and thus
the assumption G ̸= Wn does not hold.
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