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Abstract

Let G = (G,+, 0G) be a commutative group, A and B be nonempty finite subsets of G and
H = {c ∈ G : c+A+B = A+B}. Kneser’s Theorem is a fundamental result in Additive Number
Theory and it establishes that |A+B| ≥ |A+H|+ |B+H| − |H|. For any subset S of A×B, write

A
S
+B = {a+b : (a, b) ∈ S}. For any c ∈ G, set rA,B(c) = |{(a, b) ∈ A×B : a+b = c}|. An important

problem in Additive Number Theory is to find a Kneser-type theorem for the restricted sumsets

A
S
+B. In particular, more than 20 years ago V. Lev proved that if {c ∈ A+B : rA,B(c) ≥ k} ⊆ A

S
+B,

for all a ∈ A (resp b ∈ B) there is at most one b′ ∈ B (resp. a′ ∈ A) such that (a, b′) ̸∈ S (resp.

(a′, b) ̸∈ S), and A
S
+B ̸= A+B, then∣∣∣∣AS

+B

∣∣∣∣ > (
1− |A||B|

(|A|+ |B|)2

)
(|A|+ |B|)− k − 1.

In the same paper, Lev proposed as a problem to improve 1 − |A||B|
(|A|+|B|)2 to something of the

form 1−w with w → 0 whenever |(A×B)\S|
|A||B| → 0. Lev’s problem has been solved for some particular

groups and some specific subsets S of A × B. However, it remains open for arbitrary groups and
arbitrary large subsets S of A × B. Here, as a consequence of the main result of this paper, it is

shown that if we take −2k−s+2 instead of −k−1 in the lower bound of

∣∣∣∣AS
+B

∣∣∣∣, then indeed we can

take as the coefficient of |A|+ |B| something of the form 1−w with w → 0 whenever |(A×B)\S|
|A||B| → 0.

1 Introduction

In this paper R,Z,Z+,Z+
0 denote the set of real numbers, integers, positive integers and nonnegative

integers, respectively. Let G = (G,+, 0G) be a commutative group, H be a subgroup of G, A and B
be subsets of G, c ∈ G and k ∈ Z+. Write

A+B := {a+ b : a ∈ A, b ∈ B}
A+ c := A+ {c}
−A := {−a : a ∈ A}

rA,B(c) := |{(a, b) ∈ A×B : a+ b = c}|

A
k
+B := {d ∈ G : rA,B(d) ≥ k}

Stab(A) := {b ∈ G : A+ b = A}.

We will denote by πH : G → G/H the canonical projection. To avoid confusion, πH(c) (resp. πH(A))
will be an element (resp. subset) in the quotient group G/H, while c+H (resp. A+H) will denote a
subset of G.

*The full version of this work can be found in [6].
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One of the most important problems in Additive Number Theory is to find a sharp lower bound
for a sumset in terms of the size of the sets and the technical properties demanded for these sets. A
fundamental result in this direction is Kneser’s Theorem which can be stated as follows.

Theorem 1. Let G be a commutative group and A and B be nonempty finite subsets of G. Write
H = Stab(A+B). Then

|A+B| ≥ |A+H|+ |B +H| − |H|.

Proof. See [17, Thm.5.5].

An easy consequence of Kneser’s Theorem is the next result.

Corollary 2. Let G be a commutative group and A and B be nonempty finite subsets of G such that
|A+B| < |A|+ |B| − 1. Write H = Stab(A+B). Then

|πH(A+B)| = |πH(A)|+ |πH(B)| − 1.

Proof. See [2, Ch.6].

There are a number of proofs, generalizations and applications of Kneser’s Theorem; see [2, 12, 17].

Let G be a commutative group, A and B be nonempty subsets of G and S be a subset of A × B.
The restricted sumset of A and B by S is

A
S
+B := {a+ b : (a, b) ∈ S}.

Let s ≥ 0 and k ∈ Z+. We say that A
S
+B is s-regular if for all a ∈ A and b ∈ B, we have that

|{b′ ∈ B : (a, b′) ̸∈ S}|, |{a′ ∈ A : (a′, b) ̸∈ S}| ≤ s. We say that A
S
+B is (k, s)-regular if A

S
+B

is s-regular and A
k
+B ⊆ A

S
+B. There are several problems where instead of considering the sum of

each pair of elements in A × B, we want to take just some of them. In particular, the cases where
S = {(a, b) ∈ A × B : a ̸= b} or S = {(a, b) ∈ A × B : rA,B(a + b) ≥ n} for a given n ∈ Z+ have
been widely studied; see for example [1, 7, 8, 10, 13, 14, 17, 18]. Also for arbitrary large subsets S
of A × B, a number of results can be found nowadays; see [9, 11, 15, 16, 17]. An important problem

in this area is to try to generalize Kneser’s Theorem for restricted sumsets. If A
S
+B = A + B, then

Kneser’s Theorem can be used to find a lower bound for

∣∣∣∣AS
+B

∣∣∣∣ in terms of |A|, |B| and |Stab(A+B)|.

Thus it remains to study how can we bound

∣∣∣∣AS
+B

∣∣∣∣ below when A
S
+B ̸= A+B. An important step in

this direction was given by V. Lev with the next theorem (which is stated in [8] with slightly different
notation).

Theorem 3. Let k ∈ Z+, G be a commutative group, A and B be nonempty finite subsets of G and S

be a subset of A×B such that A
S
+B is (k, 1)-regular. Write w = |A||B|

(|A|+|B|)2 . If A
S
+B ̸= A+B, then∣∣∣∣AS

+B

∣∣∣∣ > (1− w) (|A|+ |B|)− k − 1.

Proof. See [8, Thm.4].

With the notation as in Theorem 3, notice that w ≤ 1
4 and the equality is achieved when |A| = |B|.

Thus the coefficient 1 − w can be as small as 3
4 . In [8, Sec.4], Lev proposed as a problem to improve

1− w in Theorem 3. There are already partial results.
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• In the case G = Z/pZ, S. Guo and Z. W. Sun gave in [4] a lower bound for

∣∣∣∣AS
+B

∣∣∣∣ when

S = {(a, b) ∈ A×B : a− b ̸∈ C} for a subset C of Z/pZ.

• When G = Z, Lev gave in [9] a lower bound for

∣∣∣∣AS
+A

∣∣∣∣. Later P. Mazur in [11] and X. Shao and

W. Xu in [16] found nontrivial lower bounds for

∣∣∣∣AS
+B

∣∣∣∣ and inverse results in this direction.

• In the case G is torsion free or elementary abelian, H. Pan and Sun provided a nontrivial lower

bound

∣∣∣∣AS
+B

∣∣∣∣ when S = {(a, b) ∈ A×B : a− b ̸∈ C} for a subset C of G.

• For arbitrary finite commutative groups G, Lev in [7] and Guo in [3] gave lower bounds for

∣∣∣∣AS
+B

∣∣∣∣
when S = {(a, b) ∈ A×B : a ̸= b}. Later this was generalized by Y. O. Hamidoune, S. C. López
and A. Plagne in [5].

More information about this topic can be found in Lev’s nice survey [10]. Lev’s problem remains open
for arbitrary groups and large subsets S of A × B, and this problem is the main motivation of this
paper. Instead of considering just (k, 1)-regular restricted sumsets, we will work with (k, s)-regular
restricted sumsets.

2 Main results

To state the main result of this paper, we need two definitions. Let G be a commutative group, A and
B be nonempty finite subsets of G and m ∈ {1, 2, . . . ,min{|A|, |B|}}.

⋆ We say that (A,B,m) is a Pollard triple if

m∑
k=1

∣∣∣∣A k
+B

∣∣∣∣ ≥ m |A|+m |B| − 2m2 + 3m− 2.

⋆ We say that (A,B,m) is a Kneser triple if there is a subset A′ of A and a subset B′ of B satisfying∣∣A \A′∣∣+ ∣∣B \B′∣∣ ≤ m− 1

and

A′m+B′ = A′ +B′ = A
m
+B.

For m ∈ {1, 2, . . . ,min{|A|, |B|}}, a result of D. Grynkiewicz establishes that (A,B,m) is either Pollard
or Kneser.

Theorem 4. Let s ≥ 1, u ∈ [0, 1), G be a commutative group, A and B be nonempty finite subsets of

G, k ∈ {2, 3, . . . ,min{|A|, |B|}} and S be a subset of A×B such that |S| ≥ (1− u)|A||B| and A
S
+B is

(k, s)-regular. Assume that A
S
+B ̸= A+B.

i) If k ≤
√

u|A||B|
2 and

(
A,B,

⌈√
u|A||B|

2

⌉)
is a Pollard triple, then

∣∣∣∣AS
+B

∣∣∣∣ ≥ |A|+ |B| −
√
8u|A||B| − 2.
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ii) If k ≤
√

u|A||B|
2 and

(
A,B,

⌈√
u|A||B|

2

⌉)
is a Kneser triple, then

∣∣∣∣AS
+B

∣∣∣∣ ≥ |A|+ |B| −
√

u|A||B|
2

− s.

iii) If k >

√
u|A||B|

2 and (A,B, k) is a Pollard triple, then∣∣∣∣AS
+B

∣∣∣∣ ≥ |A|+ |B| − u|A||B|
k

− 2k.

iv) If k >

√
u|A||B|

2 and (A,B, k) is a Kneser triple, then∣∣∣∣AS
+B

∣∣∣∣ ≥ |A|+ |B| − k − s+ 1.

If k ≤
√

u|A||B|
2 , then i) and ii) in Theorem 4 lead to∣∣∣∣AS

+B

∣∣∣∣ ≥ |A|+ |B| −
√
8u|A||B| − s− 2. (1)

If k >

√
u|A||B|

2 , then iii) and iv) in Theorem 4 imply∣∣∣∣AS
+B

∣∣∣∣ ≥ |A|+ |B| − u|A||B|
k

− 2k − s+ 3 ≥ |A|+ |B| −
√

2u|A||B| − 2k − s+ 3. (2)

Using that |A|+ |B| ≥ 2
√

|A||B|, we get from (1) and (2) the next corollary.

Corollary 5. Let s ≥ 1, u ∈ [0, 1), G be a commutative group, A and B be nonempty finite subsets of

G, k ∈ {2, 3, . . . ,min{|A|, |B|}} and S be a subset of A×B such that |S| ≥ (1− u)|A||B| and A
S
+B is

(k, s)-regular. Assume that A
S
+B ̸= A+B. Then∣∣∣∣AS
+B

∣∣∣∣ ≥ (
1−

√
2u

)
(|A|+ |B|)− 2k − s+ 2.

Corollary 5 is a nontrivial step in the solution of Lev’s problem, i.e. to solve the problem, it would

be enough to have −k − 1 instead of −2k − s+ 2 in the lower bound of

∣∣∣∣AS
+B

∣∣∣∣.
We sketch the proof of Theorem 4.

i) For m ∈ {1, 2, . . . ,min{|A|, |B|}}, a result of D. Grynkiewicz, see [2, Thm.12.1], establishes that
either the triple (A,B,m) is a Pollard triple or it is a Kneser triple.

ii) Assume that (A,B,m) is a Pollard triple. It is proven that

u|A||B|+m

∣∣∣∣AS
+B

∣∣∣∣ ≥ m |A|+m |B| − 2m2,

which implies the claim of the theorem in this case. This crucial lemma is proven using some
auxiliary subsets, partitions and elementary combinatorial arguments.
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iii) Assume that (A,B,m) is a Kneser triple. Then there is a subset A′ of A and a subset B′ of B
satisfying that ∣∣A \A′∣∣+ ∣∣B \B′∣∣ ≤ m− 1

and
A′m+B′ = A′ +B′ = A

m
+B.

It is shown that ∣∣∣∣AS
+B

∣∣∣∣ ≥ |A|+ |B| −m− 1− s.

This lemma is proven using partitions, projections and Kneser’s Theorem.
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1-18.

[16] X. Shao and W. Xu, A robust version of Freiman’s 3k-4 theorem and applications, Math. Proc. of the
Cambridge Philos. Soc. 166 (2019), 567-581.

[17] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105 Cambridge
University Press, 2006.

[18] V. Vu and P. Wood, The inverse Erdös-Heilbronn problem, Electron. J. Combin. 16 (2009) Paper 100, 1-8.


	Introduction
	Main results

