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Abstract

We show that in any two-coloring of the plane, there exists a monochromatic congruent copy of
any arithmetic progression of length 3. This problem lies at the intersection of two longstanding
but active research projects. The first is the study of Ramsey problems for arithmetic progressions
in colorings of euclidean space, for which there are many results dating back over 50 years, but
about which much is still not known. The second is centered around a conjecture of Erdős, Graham,
Montgomery, Rothschild, Spencer and Straus, which posits that any two-coloring of the plane must
contain a monochromatic congruent copy of every non-equilateral three-point configuration. Our
result confirms one of the most natural open cases of this conjecture.

1 Introduction

We let En denote n-dimensional Euclidean space, that is, En equipped with the Euclidean norm. The
field of Euclidean Ramsey theory is concerned with what types of configurations (monochromatic,
rainbow, etc.) must exist in any coloring of En using a prescribed number of colors. One of the most
commonly studied configurations is denoted `m, and consists of m collinear points with consecutive
points at distance 1 apart. In other words, `m is an m-term arithmetic progression with common
difference 1. Our main result is the following.

Theorem 1. In any two-coloring of E2, there exists a monochromatic congruent copy of `3.

Thus, by scaling, there naturally exists a monochromatic 3-term arithmetic progression with any
common difference. The classical question in this area, known as the Hadwiger-Nelson (HN) problem,
is one of the most famous open problems in combinatorics. The HN problem, first discussed by
Nelson (not in print) in 1950, asks how many colors one would need to color E2 so that there is no
monochromatic copy of `2; i.e. two points of unit distance apart. This quantity is known sometimes as
the chromatic number χ(E2) of the plane. It was known that the answer is between 4 and 7 for a long
time, and a 2018 breakthrough by de Grey [7] showed that one needs at least 5 colors. In general, it is
known that (1.239 + o(1))n ≤ χ(En) ≤ (3 + o(1))n as n→∞ [12, Section 11.1].

After the introduction of the HN problem, the area was further developed by Erdős, Graham, Mont-
gomery, Rothschild, Spencer, and Straus in a series of papers [8, 9, 10]. In these papers, they ask if,
for any non-equilateral three-point configuration K, there must be a monochromatic congruent copy
of K in any 2-coloring of E2. The conjecture was confirmed when the coloring is assumed to be polyg-
onal [14], but it is still widely open in general. As noted in [2, Section 6.3], Theorem 1 gives perhaps
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the most natural open case of this conjecture. This problem was discussed as well in the concluding
remarks of a very recent paper of Führer and Tóth [11, Page 12].

To discuss further known results, we introduce some standard notation. If we have configurations
K1, . . . ,Kr in En, we say that En → (K1, . . . ,Kr) if, for any coloring of En with r colors, there exists
a monochromatic (congruent) copy of Ki in color i, for some i. If there exists a coloring where this
does not hold, we say En 6→ (K1, . . . ,Kr). For simplicity, if Ki = K for all i and En → (K1, . . . ,Kr)
or En 6→ (K1, . . . ,Kr), we say simply En r−→ K (resp. En 6 r−→ K).

Using the above terminology, our Theorem 1 says that E2 2−→ `3. The question of for which
n, r, s1, . . . , sr we have En −→ (`s1 , . . . , `sr) also has a rich history, so we collect here the known re-

sults. Perhaps the most relevant results to this manuscript are that E2 6 3−→ `3, that E3 2−→ `3, and that
there exists m such that En 6→ (`3, `m) for all n. The first of these results was shown by Graham and
Tressler [13] using a simple hexagonal grid construction. In [8, Theorem 8] Erdős et. al. proved that

E3 2−→ T for any triangle1 T ; in particular, the second result, that E3 2−→ `3. The third result, that there
exists m such that En 6→ (`3, `m) for all n, is a recent result of Conlon and Wu [4]. They were able to
show a bound of m = 1050, and in a recent paper, Führer and Tóth [11] were able to improve this to
m = 1177. Some other relevant results in the area are as follows.

• E2 → (`2,K) for any K with 4 points (Juhász [15])

• E2 → (`2, `5) (Tsaturian [17])

• There is a set K with 8 points, such that E2 6→ (`2,K) (Csizmadia and Tóth [5])

• E3 → (`2, `6) (Arman and Tsaturian [1])

• En 6→ (`2, `2cn) for some constant c > 0 (Conlon and Fox [3])

• En 6 2−→ `6 (Erdős et. al. [8, Theorem 12])

An (a, b, c) triangle is a triangle with side lengths a, b, c. The following theorem is due to Erdős et.
al. [10, Theorem 1].

Theorem 2 (Erdős et. al.). A given 2-coloring admits a monochromatic (a, b, c) triangle if and only
if it admits a monochromatic equilateral triangle of side a, b, or c.

Note that `3 is a (1, 1, 2) triangle. Thus, by scaling, Theorem 1 and Theorem 2 imply the following
corollary.

Corollary 3. If n ≥ 2, then En 2−→ T for an (α, 2α, xα) triangle T for any α > 0 and x ∈ [1, 3].

This verifies another interesting case of the aforementioned conjecture of Erdős et. al. from [10]. We
refer to [10, 16] and [12, Theorem 11.1.4 (a)] for a collection of known families of triangles T such that

E2 2−→ T . In particular, Erdős et. al. [10] showed that E2 2−→ T if T has a ratio between two sides equal
to 2 sin(θ/2) with θ ∈ {30◦, 72◦, 90◦, 120◦}. Our result handles the case that θ = 180◦.

In the next section, we will give an outline of the proof of Theorem 1.

2 Sketch of proof

In this section, we will discuss the main ideas of the proof of Theorem 1. We start with a simple
corollary of Theorem 2.

1Throughout, degenerate triangles (that is, three collinear points) are also regarded as triangles.
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Corollary 4. If a coloring of E2 does not contain a monochromatic `3, then it also does not contain
a monochromatic equilateral triangle of side-length 1 or 2.

Our proof of Theorem 1 will proceed in two parts, both with the same general outline. Each will
proceed by contradiction, starting with the assumption that there exists a coloring of E2 that has no
monochromatic `3. Then, we begin with a small set of starting points, and show that all possible
colorings of those starting points will result another point that must be colored both blue and red;
that is, a contradiction. So far, we have the following “rules” at our disposal that will allow us to
execute this proof: we can take two points of the same color at distance 1 or 2 apart, and do one of
the following.

• Add a third point of the opposite color to form an `3 (as a midpoint if the points are distance 2
apart), or

• add a third point of the opposite color to create an equilateral triangle (of side-length 1 or 2).

Where the second option follows directly from corollary 4. Visually, we can think of these rules as
follows.

Figure 1: The color implication steps

These two rules are not quite enough to establish Theorem 1. Thus, the first part of the proof,
detailed in Section 2.1, will be to establish one more useful rule. Then, in section 2.2 we will describe
how to use our rules to prove Theorem 1.

2.1 Another rule

The goal of this section is to describe the following result.

Lemma 5. In any two-coloring of E2 containing no monochromatic `3, any unit triangle colored blue-
blue-red has a blue centroid.

By a symmetric argument, under the same assumptions any red-red-blue triangle has a red centroid.
To outline the proof of this result, we need an efficient way to describe the coordinates of our point
sets. If a, b, c, d are integers, then all points we use will be of the following form:

[a, b, c, d] :=

(
a
√

3 + b
√

11

12
,
c+ d

√
33

12

)
. (1)

The proof will proceed as follows: we will start with a basic pointset, containing a unit equilateral
triangle and its centroid. Then, we will assume the triangle is colored blue-blue-red but has a red
centroid, and use the rules from the previous section (as in Figure 1) to derive a contradiction. The
pointset we will use is drawn in Figure 2, with the following explicit coordinates.

p1 = [−4, 0, 0, 0], p2 = [0, 0, 0, 0], p3 = [2, 0,−6, 0], p4 = [2, 0, 6, 0],
q1 = [−1,−3, 3,−1], q2 = [−1,−3,−3, 1], q3 = [2, 0, 0, 2], q′3 = [2, 0, 0,−2],
q4 = [−3,−3,−3,−1], q5 = [−3,−3, 3, 1].
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Figure 2: The base points needed to verify the lemma

We will need to consider all possible colorings of this pointset, which results in some case work.
However, the symmetries present allow us to limit this to only 6 cases, and the color implications we
end up with are simple enough to be verified (somewhat tediously) by hand. Alternatively, we provide
a method to quickly verify the result computationally. We again refer to [6] for a complete description
of these results, but for the moment we use Figure 3 to visualize the simplest case - that is, where q1
and q2 have different colors.

Figure 3: Case 1: q1 is red and q2 is blue (or vice versa)

The contradiction comes from the fact that the point s18 must be colored both red and blue; the
blue coloring comes from the `3 created with red points s11 and p2, and the red coloring comes from
the equilateral triangle created with blue points s14 and s17. We note, finally, that not all points from
Figure 2 are used in this case. However, the remaining cases will make use of all of the pi and qj .



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

2.2 Putting it all together

Using the rules described in section 2 as well as the one established in section 2.1, we can now complete
the proof of Theorem 1. We’ll deal with a 1√

3
-scaled hexagonal grid - that is, where the smallest

triangles are scaled to have edge-length 1√
3
. A straightforward argument (detailed in [6]) using these

rules shows that if we assume there is no monochromatic `3, then there is only one coloring of this grid
up to isometry - that is, the one pictured in Figure 4.

Figure 4: A circle with radius 4√
3

in the colored grid

To finish the proof is straightforward. We pick two points in our coloring that are less than distance
8√
3

from one another and have different colors; call them p1 and p2, and let them be red and blue

respectively. As illustrated in Figure 4, any point on the hexagonal grid at distance 4√
3

from p1 must

be red as well. By rotating the grid, we can actually show that all points at distance 4√
3

from p1 are

red, and symmetrically all points at distance 4√
3

from p2 are blue. However, since p1 and p2 are of

distance less than 8√
3

from one another there must be a point that is distance 4√
3

from both of these

points, which provides our contradiction.
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