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Abstract

Given a finite set X ⊆ Nd, a non-trivial copy of X is a set obtained by scaling X by a positive
factor and translating it. The Multidimensional Szemerédi Theorem of Furstenberg and Katznel-
son [6] asserts that the largest cardinality of a subset of [n]d without a non-trivial copy of X, denoted
rX(n), is o(nd). We prove that, for any X with |X| ≥ 3, there exists CX > 1 such that the number
of subsets of [n]d without a non-trivial copy of X is at most 2CX ·rX(n) for infinitely many n.

1 Introduction

Roth’s Theorem [10] famously states that every subset of [n] := {1, . . . , n} without three elements
in arithmetic progression has cardinality at most o(n). This was extended to arithmetic progressions
of arbitrary length in the groundbreaking work of Szemerédi [12]. Szemerédi’s Theorem can be seen
as a very strong “density version” of the elementary van der Waerden Theorem [13] which says that
every colouring of the natural numbers with finitely many colours contains monochromatic arithmetic
progressions of arbitrary length.

A few years later, Furstenberg [5] reproved Szemerédi’s Theorem using tools from ergodic theory.
This new perspective turned out to be widely applicable, yielding several remarkably general results.
One such example is the so-called “Multidimensional Szemerédi Theorem” of Furstenberg and Katznel-
son [6], which we explain next. Given a set X ⊆ Nd, a copy of X is a set of the form

b⃗+ r ·X = {⃗b+ rx⃗ : x⃗ ∈ X}

where b⃗ ∈ Rd and r ≥ 0. It is said to be a non-trivial copy if r > 0. As an example, a 3-term arithmetic
progression is nothing more than a copy of X = {1, 2, 3}. A set A ⊆ Nd is X-free if it does not contain
a copy of X and rX(n) denotes the cardinality of the largest X-free subset of [n]d.

Theorem 1 (Multidimensional Szemerédi Theorem [6]). For any finite set X ⊆ Nd, rX(n) = o(nd).

We focus on the closely related problem of counting the number of X-free subsets of [n]d. An obvious
lower bound is 2rX(n), which one can get by taking any subset of the largest X-free set. Our main
result says that the exponent rX(n) is within a constant factor of being tight for infinitely many n ∈ N.
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Theorem 2. For any finite set X ⊆ Nd with |X| ≥ 3 there exists CX > 1 such that the number of
X-free subsets of [n]d is at most 2CX ·rX(n) for infinitely many n.

We note that Theorem 2 extends the work of Balogh, Liu and Sharifzadeh [1] who proved it for
arithmetic progressions and Kim [9] who focused on the case that X = {⃗0, e⃗1, . . . , e⃗d} where e⃗i is the
ith standard basis vector of Rd.

2 Key Ideas and Challenges

To anyone who has followed recent developments on obtaining “counting versions” of important the-
orems from extremal combinatorics, it should be no surprise that our proof is an application of the
container method developed by Saxton and Thomason [11] and Balogh, Morris and Samotij [2]. The
container method provides a widely applicable “recipe” for bounding the number of independent sets
in a “well-behaved” hypergraph from above.
In our setting, the choice of the hypergraph is straightforward; we let H be the hypergraph with

vertex set [n]d in which every non-trivial copy of X forms a hyperedge. An independent set in H clearly
corresponds to an X-free set, and so our goal is to bound the number of independent sets in H. Note
that every vertex of H is contained within Θ(n) hyperedges and that any pair of distinct vertices of H
are only contained within O(1) hyperedges together. In other words, the hypergraph H has very small
“co-degrees.” As it turns out, this implies that it is sufficiently “well behaved” to apply the method.
The key ingredient in most applications of the container method is a so-called “supersaturation

bound.” In the context of our problem, a supersaturation theorem is a lower bound on the number
of copies of X within a subset of [n]d of cardinality greater than rX(n). Roughly speaking, our key
supersaturation bound is as follows.

Lemma 3 (Supersaturation Bound, Roughly). Let X ⊆ Nd with |X| ≥ 3. There exists CX > 1 such
that, for infinitely many n ∈ N, every set A ⊆ [n]d with |A| ≥ CX · rX(n) contains a “large” number of
copies of X.

Given a sufficiently strong supersaturation bound of the type described in Lemma 3, Theorem 2 can
be deduced from many different forms of the Hypergraph Container Lemma; in particular, we apply a
version from Saxton and Thomason [11]. Most of the work in the paper is devoted to proving Lemma 3.
One of the key challenges in establishing a supersaturation bound that applies to all sets of cardinality

CX · rX(n) for some constant CX is that the function rX(n) itself is not well-understood. Letting
rk(n) := r{1,...,k}(n), the best known bounds on r3(n) (i.e. the case of 3-term arithmetic progressions)
are currently
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where 0 < c < 2
√
2 and β > 0 are constants. Both inequalities were proved recently by Hunter [7]

(lower bound) and Kelly and Meka [8] (upper bound) and represent substantial breakthroughs in the
field. In spite of these achievements, we still do not know r3(n) to within a constant factor, nor do we
have precise asymptotics for rX(n) for other sets X of interest. Thus, we will need to find a way of
proving a supersaturation result for sets of cardinality CX · rX(n) which does not require us to know
any detailed information about the growth rate of rX(n).
To obtain the desired supersaturation result, a key idea from [1] is to apply a “crude” supersaturation

bound which we “amplify” via a double-counting trick. For the crude bound, if we let ΓX(A) denote
the number of copies of X in a set A ⊆ [n]d, then

ΓX(A) ≥ |A| − rX(n).

This is trivial to see by simply deleting an element of A within a copy of X (if one exists) and applying
induction. This trivial idea becomes more powerful if one applies it within a random “subcube” of [n]d.
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To be a bit less vague, suppose that M ≪ n and take a random copy of [M ]d within [n]d by scaling
[M ]d by a random prime p and translating it by a random vector b⃗ (where p and b⃗ are chosen with
some constraints to make this copy a subset of [n]d). Now, given any set A ⊆ [n]d, we can use the
crude bound to get that the number of copies of X contained within this copy of [M ]d is at least the
number of points of A within this subcube minus rX(M). We can also bound this quantity above in
terms of ΓX(A); putting these two bounds together yields a lower bound on ΓX(A).

Unfortunately, as it turns out, the argument in the previous paragraph provides a lower bound on
ΓX(A) in terms of rX(M), where M = M(n) is a sublinear function of n. In fact, the bound obtained
is a multiple of

|A|
2nd

− rX(M)

Md

which is clearly useless in cases where |A|
2nd ≤ rX(M)

Md . Recall that we need the supersaturation bound to
work for any set A such that |A| ≥ CX · rX(n) for some constant CX > 1. Thus, in order for the bound

to be useful, we need that CX ·rX(n)
2nd is significantly larger than rX(M)

Md . Again, we run into the same

problem: we do not understand the growth rate of rX(n). In particular, if the ratio rX(n)
nd fluctuates

wildly as n tends to infinity, then we have no hope of obtaining a bound of this form that holds for all
n. However, by combining the lower bound in (1) (in fact, a weaker bound of Behrend [4] from 1946

suffices) generalized to rX(n) with a simple limit argument based on the fact that
√

N +
√
N −

√
N

converges, we can get that such a bound holds for infinitely many n, allowing us to obtain Lemma 3.
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