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Abstract

The Borsuk problem asks for the smallest number such that any bounded set in n-dimensional
space can be cut into that many subsets with smaller diameter. It is a classical problem in combina-
torial geometry that has been subject of much attention over the years, and research on variants of
the problem continues nowadays in a plethora of directions. In this work, we propose a formulation
of the problem in the context of graphs. Depending on how the graph is partitioned, we consider
two different settings dealing either with the usual notion of diameter in abstract graphs, or with
the so-called continuous diameter for the locus of plane geometric graphs. We present a complexity
result, exact computations and upper bounds on the parameters associated to the problem.

1 Introduction

In 1933, Borsuk posed the question of whether every bounded set X in Rd could be partitioned into
d + 1 closed (sub)sets each with diameter smaller than that of X [1]. In this context, the diameter is
defined as the maximum of the distances between two points in the set, under the Euclidean metric.
This leads to the concept of Borsuk number. For a set X ⊂ Rd, the Borsuk number b(X) is the smallest
number such that X can be partitioned into b(X) subsets, each with diameter smaller than X. Borsuk’s
question can be thus stated as whether b(X) ≤ d + 1, for any bounded X ⊂ Rd. The answer to this
question was shown to be positive for d = 2, 3 [4, 10], and for general d for centrally symmetric convex
bodies [11] and smooth convex bodies [6]. The general answer turned out to be negative, as shown
in 1993 by Kahn and Kalai [8]. Since then, researchers have been trying to figure out the smallest
dimension for which the partition does not exist, being d = 64 the currently best [7]. Many variants of
the Borsuk problem have also been studied, see [12] for a recent survey.

We present a formulation of the problem in the context of graphs. Conceptually, we define the
Borsuk number of a graph as the smallest number b(G) such that G can be partitioned into b(G)
subgraphs, each with smaller diameter than the original graph. However, we need to define carefully
how a graph can be partitioned. We propose two natural ways to do this, which lead to two variants
of the problem: the discrete and the continuous Borsuk number of a graph. We define these formally
in Section 2. Sections 3–5 contain our study on both parameters, encompassing a complexity result,
exact computations and upper bounds. Proofs are omitted due to the page limit, although we very
briefly explain the key ideas to prove our main results; they are based on an accurate analysis of how
shortest paths and distances can change when modifying a graph.
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1.1 Preliminaries

The distance between two vertices in an abstract graph G is the length of a shortest path connecting
them. The diameter of G, denoted by diamd(G), is the maximum distance between any two vertices
of G. A plane geometric graph is an undirected graph G = (V (G), E(G)) whose vertices are points in
R2, and whose edges are straight-line segments, connecting pairs of points, that intersect only at their
endpoints. Each edge e has a length, |e|, equal to the Euclidean distance between its endpoints. The
locus G of a plane geometric graph G is the set of all points of the Euclidean plane that are on (the
edges of) G. In contrast to (abstract) graphs, in G, there can be an infinite number of pairs of points
whose distance is equal to the diameter. Here, the distance between two points is again the length of a
shortest path between the points, but now such a path will contain up to two fragments of edges if the
points are not vertices. The diameter of G or continuous diameter of G, diamc(G), is the maximum
distance between any two points in G. Two points whose distance attains this value are called diametral
points, and the shortest paths connecting diametral points are diametral paths. Problems dealing with
the continuous diameter of a graph, also called generalized diameter [3], have received considerable
attention recently, see [2, 5]. In the continuous case, we treat G and G, interchangeably, as a closed
point set, and assume that the distance between the endpoints of edge e is |e|.

2 Definitions of Borsuk number

2.1 Continuous Borsuk number

We consider a plane geometric graph G and partition its locus G by a sequence of cuts with straight
lines. A line ` naturally partitions G into two geometric subgraphs (possibly, one empty). Moreover, to
guarantee that the partition by ` does not produce a disconnected subgraph, we add to both subgraphs
the longest segment in ` that has its endpoints in G ∪ `; this maximal segment is denoted by s. So,
actually, the partition gives two subgraphs of G ∪ `, which are:

G1 = (`+ ∩ G) ∪ s and G2 = (`− ∩ G) ∪ s,

where `+ and `− are, respectively, the open half-planes above and below ` (right–left for vertical lines.)
We define the continuous Borsuk number of G or Borsuk number of G, and denote it by bc(G), as

the minimum cardinality of a partition of G by lines `1, . . . , `k into subgraphs G1, . . . ,Gk+1 such that
max{diamc(G1), . . . ,diamc(Gk+1)} < diamc(G). In order to guarantee that the intersection with a line
creates at most two subgraphs, each line `i is inserted only into one of the existing subgraphs.

Figure 1(a) illustrates this definition for a square. After partitioning the square with a vertical
line ` (dashed) through its center point, we obtain two subgraphs: all points of G on each halfplane
induced by `, union the maximal segment in ` intersecting G. Since this partitions the graph into two
subgraphs (of G ∪ `), each with smaller diameter than that of G, its continuous Borsuk number is two
(best possible). However, sometimes more subgraphs are needed. The example in Figure 1(b) shows
a 4-star graph, requiring at least two lines, giving continuous Borsuk number three. Note that the
continuous diameter can increase when inserting a line, due to distances between points on the graph
and new points on the line, see Figure 1(c).

One of the main open questions in this continuous setting is whether bc(G) can be upper-bounded
by a constant. The following proposition gives a linear upper bound on the number of vertices of G.

Proposition 1. Let G be the locus of a plane geometric graph with n vertices. Then, bc(G) ≤ 2n− 1.

Proof. (Brief sketch.) Consider a direction not parallel to any of the edges of G; assume for simplicity
that this is the vertical direction. For ε > 0, we split G by 2n vertical lines into 2n−1 subgraphs; there
are two lines associated to each vertex, one to the left and the other to the right, both at distance ε
from the vertex. Thus, there are 2n − 1 vertical strips, each containing either only portions of edges
of G, or only one vertex and portions of edges. Each resulting graph, G1, . . . ,G2n−1, is in one of these
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Figure 1: (a) A square with side length 1 and diameter 2 (given by green paths), and a partition with
a line; (b) a 4-star partitioned into three subgraphs by inserting two lines; (c) the continuous diameter
increases when inserting the dashed line into the tree (p, q is a diametral pair.)

strips. Analyzing the different types of diametral pairs of points that may have been generated in
these graphs Gi, we can prove that their diameter is smaller than diamc(G). It is worth noting that
this construction does not work using only n lines, since the width of the strips containing a vertex
of G must tend to zero, in order to avoid diametral pairs of points located on the inserted lines whose
distance is larger than the original diameter.

2.2 Discrete Borsuk number

We now consider partitions of an abstract graph G by simply deleting edges; here all edges have
the same length, equal to 1. The discrete Borsuk number of G, denoted by bd(G), is the mini-
mum cardinality of a partition of G by deleting edges into subgraphs G1, . . . , Gk (of G) such that
max{diamd(G1), . . . ,diamd(Gk)} < diamd(G). The following observation gives some simple examples.

Observation 2. (i) If G is a path or a cycle of even length, bd(G) = 2.

(ii) If G is a cycle of odd length, bd(G) = 3.

(iii) If G is a star graph on k + 1 vertices, bd(G) = k.

In Section 5, we study the Borsuk number of an arbitrary tree T , in both, the discrete and the
continuous setting. We show that while bc(T ) is bounded by a constant, bd(T ) can be linear with the
number of vertices (as happens for the star). This linearity of the discrete Borsuk number also occurs
in other families of graphs, such as unicycle graphs and maximal outerplanar graphs that are not trees.

3 Computational complexity

The problem of deciding whether the discrete Borsuk number of a graph G is below a given threshold
is related to the minimum clique cover problem. A clique cover of a graph G is a partition of its vertex
set into cliques. The clique cover number of G is the minimum size of a clique cover. The minimum
clique cover problem seeks for a minimum clique cover.

Lemma 3. The clique cover number of a non-complete graph G is an upper bound of bd(G), and both
numbers coincide when diamd(G) = 2.

Theorem 4. Let G be a graph, and let k be a positive integer number. The problem of deciding whether
bd(G) < k is NP–complete.

Proof. Let G be a graph such that diamd(G) > 1 (otherwise, G is a complete graph, and bd(G) is simply
the number of vertices of G, since all edges need to be removed to have each connected component
with diameter zero.) The cone CG of G is the graph obtained from G by adding a new vertex adjacent
to all the vertices in G. The graph G has a clique cover of size k if and only if CG has a clique cover of
size k. Since diamd(CG) = 2, by Lemma 3, the clique cover number of CG is precisely bd(CG). Thus,
the result follows from the fact that deciding whether the clique cover number of an arbitrary graph is
below a given threshold is an NP–complete problem [9].
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Figure 2: A graph that is monotone with respect to the x-axis; G∪FI consists of the graph (in black)
and the gray region. Red vertical lines either intersect G ∪ FI at a single point or at a segment.

We conjecture that the problem in the continuous setting is also NP-hard, but, at the moment, a
proof remains as future work.

4 Continuous Borsuk number of monotone graphs

Let G be a (plane geometric) graph, and let G ∪ FI be the part of the plane formed by the graph
itself and all its interior faces. The graph G is said to be `-monotone if the intersection of any line
perpendicular to ` with G∪FI is either a single point or a segment; see Figure 2. We extend naturally
this concept to the locus G. For an `-monotone graph G, and a line `′ perpendicular to ` that is moving
from left to right (parameterized by ` ∩ `′), we define the functions d+(`′) = diamc((`

′+ ∩ G) ∪ s′) and
d−(`′) = diamc((`

′− ∩ G) ∪ s′), where s′ is the maximal segment of `′ intersecting G.

Lemma 5. The functions d+(`′) and d−(`′) are monotone, respectively, decreasing and increasing.

The continuous diameter can increase when partitioning a graph (see Figure 1b) but, as a straight-
forward consequence of the preceding lemma, we obtain that this is not true for monotone graphs.

Corollary 6. The functions d+(`′) and d−(`′) associated to an `-monotone graph G are upper-bounded
by diamc(G).

In order to bound the continuous Borsuk number of a monotone graph, we introduce the concept
of diametral set. The diametral set D(p, q) ⊆ G of a diametral pair p, q is defined as the union of
all the shortest paths connecting p and q. Note that, for example, a cycle has an infinite number of
diametral pairs of points, but only one distinct diametral set, which is the whole cycle (the union of
the two diametral paths for each diametral pair is the same, the cycle). Thus, while a graph can have
an infinite number of diametral pairs of points, we next state that this is not the case for diametral
sets, which is key to prove Theorem 8 below.

Lemma 7. Let G be the locus of any plane geometric graph with n vertices. The number of distinct
diametral sets of G is in O(n2).

Theorem 8. Let G be an `-monotone graph such that there are no k+ 1 disjoint diametral sets. Then,
bc(G) ≤ k + 2.

Proof. (Brief sketch.) By Corollary 6, in order to reduce the original diameter when cutting by lines,
it suffices to intersect the O(n2) diametral sets of Lemma 7, with lines perpendicular to `, since the
new points on the cutting lines cannot cause an increase of diamc(G). If we shorten one of the shortest
paths connecting two diametral points, their distance decreases, and so each of the O(n2) diametral
set only needs to be intersected once. We can prove that all the sets can be intersected using k + 1
lines. The idea is to project each diametral set onto the line ` so that each set determines an interval
on the line. Then, for each interval, we define a line that intersects it, and also crosses all the intervals
overlapping with that one. This produces a sequence of subsets of diametral sets D0 ⊃ D1 ⊃ D2 . . .,
where D0 is the set of all diametral sets of G, satisfying that the diametral sets in Di−2\Di−1 do not
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intersect those in Di−1\Di. Hence, we can find at most k + 1 of the lines defined above, otherwise we
would have k + 1 disjoint diametral sets.

p

We note that the previous bound can be attained, at least for
k = 1. Consider, for example, the wheel graph on 33 vertices,
W33, embedded in the plane such that its outer boundary is a
regular 32-sided polygon, and the distance from the wheel center
to each polygon vertex is one. This implies that each side has
length s = 2 sin(π/32) ≈ 0.19. Any two vertices of the polygon
are connected by a path of length two, through the wheel center.
This path is shorter than going along the boundary as soon as the
other vertex is more than ten vertices away along the boundary
(since 11s > 2). It follows that the diametral pairs of this graph
are given by pairs of midpoints of polygon sides that are at distance
2 + s ≈ 2.19. In fact, each midpoint has nine points at exactly that
distance, corresponding to the midpoint exactly opposite, plus those of the first four sides neighboring
the opposite side, in each direction. See side figure for the nine diametral pairs involving p.

Next we argue that subdividing by one line is not enough to decrease the diameter of W33. Any line
intersecting the wheel will leave at least 15 complete triangles of the wheel on one side. These triangles
are contiguous, and form a fan. The diameter of any such a fan with 13 or more triangles remains
the same as the original one, 2 + s. It follows that two lines are necessary. Moreover, they are also
sufficient, since two parallel lines at a very small distance that enclose the center will result in three
subgraphs with smaller diameter. Therefore, bc(W33) = 3 = k + 2.

5 Borsuk number of trees

In this section, we first compute bd(T ) for an arbitrary tree T , and then we move to the continuous
version of the problem, which behaves differently.

Proposition 9. The discrete Borsuk number of any tree T with n vertices can be computed in O(n)
time. Furthermore,

(i) If the center of T is not a unique vertex, then bd(T ) = 2.

(ii) If the center of T is a vertex v, then bd(T ) = bd(T ′) = δT ′(v), where T ′ is the subtree of T induced
by the vertices of all diametral paths, and δT ′(v) is the degree of v in T ′.

While bd(T ) depends on the center of T , we next show that the continuous Borsuk number is upper-
bounded by a constant. We apply the following lemma that states that lines intersecting a tree at its
center cannot cause an increase of the diameter of the tree.

Lemma 10. Let T be the locus of a tree with center point C, and let ` be a line that passes through C.
Then, max{diamc((`

+ ∩ T )∪ s), diamc((`
− ∩ T )∪ s)} ≤ diamc(T ), where s is the longest segment in `

that has its endpoints in T ∪ `.

Lemma 10 also holds for lines that intersect the tree, not at the center, but infinitely close to it.
Further, with lines that go exactly through the center C, we cannot guarantee that the diameters
obtained after cutting are strictly smaller than diamc(T ) (for example, the star graph with three edges
of the same length and not contained in the same half-plane through the center). However, Proposition
11 below states that when a tree has Borsuk number 2, we can always find a line intersecting T at
a point infinitely close to the center giving a correct partition (that is, the diameter decreases with
respect to the original). This is an important step in order to design an algorithm for deciding whether
the continuous Borsuk number of a tree is 2 or 3 which, by Theorem 12, are its possible values.
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Proposition 11. Let T be the locus of a tree with center point C. If bc(T ) = 2 then there exists a
sequence of lines {`i}i≥0 satisfying that:

(i) {dT (ti, C)}i≥0 approaches zero, where ti is the closest point in T ∩ `i to C.

(ii) there exists j ≥ 0 such that for every i ≥ j, max{diamc((`
+
i ∩ T ) ∪ si), diamc((`

−
i ∩ T ) ∪ si)} <

diamc(T ), where si is the longest segment in `i that has its endpoints in T ∪ `i.
Theorem 12. Let T be the locus of a tree. Then, bc(T ) ≤ 3.

Proof. (Brief sketch.) Consider a line ` that passes through the center point C of T , and splits the tree
into two graphs T1 and T2. We can assume that ` does not contain any edge incident or containing C
as an interior point. By Lemma 10, the diameters of T1 and T2 are at most diamc(T ). A case analysis
of how distances change after inserting the line, lets us conclude that dT1(p, C) ≤ diamc(T )/2 for every
point p on T1 (analogous for T2). This fact is the key tool to prove that the diameters of T1 and T2 are
strictly smaller than diamc(T ) when C is not a vertex of T , which leads to bc(T ) = 2.

If C is a vertex of T , a diametral pair of T1 or T2 may consists of two leaves at distance diamc(T ).
Then, we may need two lines to decrease the diameter; for example, this is the case in the star graph
with all edges of the same length and such that no half-plane through the center contains all of them. It
suffices to take two parallel lines to `, one slightly above and the other below. This gives bc(T ) ≤ 3.

6 Conclusions

We have introduced the concept of Borsuk number of a graph in a discrete and a continuous setting.
Let us mention that this is ongoing research. In the continuous setting, we are currently focusing on
proving the NP-hardness of computing bc(G), and whether there is a polynomial time algorithm to
decide whether bc(G) = 2. In addition, we are trying to answer the question of whether bc(G) can be
upper-bounded by a constant, and designing an algorithm for trees as mentioned above. We are also
delving deeper into the discrete version, currently studying the Borsuk number of unicycle graphs to
better understand the behavior of this parameter.
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[5] D. Garijo, A. Márquez, N. Rodŕıguez, and R. I. Silveira. Computing optimal shortcuts for networks. Eur.
J. Oper. Res., 279(1):26–37, 2019.

[6] H Hadwiger. Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren
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