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Abstract

We study the cycle distribution of a random n-lift of a fixed d-regular graph on m vertices,
deriving an asymptotic formula for the probability that it has girth at least g = g(n), provided
that g(n) grows sufficiently slowly with respect to m, d and n. As a consequence of the existence
of lifts with high girth, we construct graphs with very large girth that admit frozen colourings, and
graphs with moderately large girth where typical colourings are partially-frozen. The latter result
shows the tightness on the girth condition of a recent theorem on graph colouring rigidity by Hurley
and Pirot [STOC, 2023].

1 Introduction

An n-lift of a graph G is a graph L = Ln(G) with vertex set V (L) := V (G) × [n] and edge set
obtained as follows: for every edge uv ∈ E(G), we place a perfect matching between the sets {u} × [n]
and {v} × [n]. Let Ln(G) be the set of all n-lifts of a graph G.

A random n-lift of G, denoted by Ln(G), is an n-lift of G chosen uniformly at random from Ln(G).
It is worth noticing that we may generate Ln(G) by choosing each perfect matching corresponding to
an edge in G, independently and uniformly at random.

Random lifts of graphs were introduced by Amit and Linial in 2002 [2, 3] and since then, they have
attracted a lot of interest in the area. Among other works, we highlight the results of Amit, Linial
and Matoušek [4] on their independent and chromatic numbers, the results of Greenhill, Janson and
Ruciński [10] on their number of perfect matchings, and the work of Bordenave [6] on their spectral
properties.

Fortin and Rudinsky [8] studied the distribution of short cycles in random lifts. Given a sub-
graph H ⊆ L, its pattern is the multigraph on V (G) obtained by adding an edge (u, v) for every
edge (u, x)(v, y) ∈ E(H). The following observation is key to study the cycles of random lifts

If C is a k-cycle of L ∈ Ln(G), then the pattern of C is a closed non-backtracking k-walk in G.
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RED2022-134947-T and the Programme Severo Ochoa y Maŕıa de Maeztu por Centros y Unidades de Excelencia en I&D
(CEX2020-001084-M), all of them funded by MICIU/AEI/10.13039/501100011033.

‡Email: gsantos@dim.uchile.cl. Research of GS supported by ANID Becas/Doctorado Nacional 21221049.



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

Let wk(G) be the number of closed non-backtracking k-walks in G. For all k ≥ 3, we let

λk(G) :=
wk(G)

2k
.

and

µk(G) :=
k−1∑
`=3

λ`(G).

Theorem 1 ([8]). Let n ∈ N and d ≥ 3, and let G be a d-regular graph. For any k ≥ 3, let Zk,n
be the number of cycles of length k in Ln(G). Let Zk be independent random variables with Poisson
distribution of parameter λk(G) respectively. Then (Zk,n)k≥3 → (Zk)k≥3 in distribution as n→∞.

For any graph H, let g(H) be its girth; the length of a shortest cycle. The previous result implies
that, for every g0 ≥ 3,

lim
n→∞

P(g(Ln(G)) ≥ g0) = e−µg0 (G) > 0. (1)

The qualitative behaviour of short cycles in random lifts is the same as for other random graph
models, such as Erdős-Rényi random graphs or random regular graphs (see e.g. [9]). In the case
of random regular graphs, McKay, Wormald and Wysocka [12] went a step further and studied the
distribution of long cycles. As a corollary, they obtained an enumeration formula for d-regular graphs
on n vertices with girth at least g, provided that (d− 1)2g−3 = o(n).

Our main result extends (1) in the line of [12], allowing for the girth g(n) to tend to infinity
when n→∞, provided it does it sufficiently slowly with respect to the other parameters.

Theorem 2. Let n ∈ N, d = d(n) ≥ 3, m = m(n) and g = g(n) such that m(d− 1)2g−4 = o(n). If G
is a d-regular graph on m vertices, then,

P(g(Ln(G)) ≥ g(n)) ∼ e−µg(n)(G). (2)

An immediate corollary of our main theorem is the existence of lifts of any fixed regular graph G
with very high girth.

Corollary 3. Let n ∈ N, d = d(n) ≥ 3, m = m(n) and g = g(n) such that m(d − 1)2g−4 = o(n).
If G is a d-regular graph on m vertices, then, for any sufficiently large n, there exists L ∈ Ln(G)
with g(L) ≥ g(n).

The condition on the parameters is not far from optimal. Recall Moore’s bound for odd girth: the
number of vertices of any d-regular graph with girth at least g = 2s+ 1 is

n ≥ 1 + d

s−1∑
i=1

(d− 1)i ≥ (d− 1)(g−1)/2

and thus the restriction on the girth is tight up to a constant factor.

1.1 Ideas of the proof

To exemplify the ideas behind the proof of Theorem 2, we give a sketch of a direct proof of Corollary 3
that does not use the theorem. The approach is a combination of the second moment technique and
the switching method, that we now detail.

One of the most important aspects is to control the expected number of appearances of k-cycles (and
other subgraphs) in random lifts, which is done using the two lemmas below.

Lemma 4. For every k ≥ 3 satisfying m(d− 1)2k−4 = o(n), if Xk is the number of k-cycles in Ln(G),
then

E(Xk) ∼ λk(G).
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A graphH is feasible if its vertex set is a subset of V (G)× [n] and there exists L ∈ Ln(G) withH ⊆ L.

Lemma 5. Let H be a connected feasible graph on h vertices and e edges. Let YH be the number of
subgraphs isomorphic to H in Ln(G). If e = o(n1/2), then

E(YH) = O(mdh−1nh−e).

We use these two results in the next lemma, which is proved by an application of the second moment
method. Crucially, we also use an upper bound on the number of subgraphs H that can be obtained
from the union of two cycles, that depends on the number of components and the number of edges of
the intersection graph of the two cycles, that was derived in [12].

Lemma 6. Let sk := max{2λk(G), log2 n}. Then,

P(Xk > sk, for some 3 ≤ k < g) = o(1).

Moreover, the probability that there are two cycles of length shorter than g that share at least one edge
is o(1).

With the previous lemma in hand, we give a proof of the existence of a lift of G with no cycles of
length less than g (short cycles), that we now sketch.

Let L0 be a graph that satisfies the conclusions of Lemma 6 (few short cycles and all of them
edge-disjoint). A key property is that the number of vertices participating in short cycles is at most

g−1∑
k=3

ksk = o(n).

In the classical argument of Erdős to find graphs with large girth and large chromatic number (see
e.g. [1]), an arbitrary vertex of each short cycle is deleted, which enforces the girth to be at least g.
However, since we want to maintain the property that the final graph is a lift of G, we need to find an
alternative way to get rid of the short cycles of L0. The idea will be to use a switching-type argument
to destroy them one by one, while keeping the structure of a lift. In doing so, we will strongly use that
the cycles are edge-disjoint.

A switch on L ∈ Ln(G) is a local transformation defined as follows: Let uv ∈ E(G) and x1, x2, y1, y2 ∈
[n] such that (u, x1)(v, y1) and (u, x2)(v, y2) are edges of L, and (u, x1)(v, y2) and (u, x2)(v, y1) are not.
Then, we delete the former two edges from L and add the latter two. Observe that the resulting graph
is also in Ln(G).

Given an edge e = (u, x1)(v, y1) and a cycle C of L with e ∈ E(C), we say that f = (u, x2)(v, y2)
is (e, C)-good if and only if:

(i) f is not in a short cycle of L, and

(ii) dist(f, c) ≥ g for every c ∈ V (C).

Starting with L0, we construct a sequence of lifts L0, L1, L2, . . . such that every lift has less short
cycles than the previous one. To do so, at step i we choose any cycle Ci of Li and any edge ei ∈ E(Ci).
Then, we choose fi to be a (ei, Ci)-good edge of Li and we switch ei and fi. The rest of the proof
consists on showing that: (1) after the switch the number of short cycles in the resulting graph has
decreased, and (2) every pair (ei, Ci) has at least one good edge fi.
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2 Existence of large girth graphs with frozen and partially-frozen colourings

Beyond the existence of lifts with large girth, our result have implications in Graph Colouring. Let G
be a graph and m ∈ N. The m-recolouring graph of G, denoted by Rm(G), is the graph whose vertices
are the proper m-colourings of G and two colourings are adjacent if they differ at exactly one vertex.
An isolated vertex in Rm(G) is called a frozen colouring of G, and can be understood as a colouring
that admits no single-vertex recolouring that keeps its properness. The frozen terminology comes
from Glauber dynamics on colourings, a Markov chain with state space Rm(G) used to sample almost
uniform m-colourings of G. In the dynamics, frozen states correspond to absorbing states of the chain,
and impede the chain to converge to the uniform distribution. It is thus interesting to study under
which conditions, such colourings may appear.

Let us first review some structural properties of Rm(G). If G has maximum degree ∆, a necessary
condition for the existence of frozen colourings is m ≤ ∆ + 1. In particular, if m = ∆ + 1, then the
graph G must be d-regular, where d = ∆. In this abstract, we will restrict ourselves to the case where G
is a d-regular graph and m = d+ 1.

Feghali, Johnson and Paulusma [7] proved that Rd+1(G) is composed of a unique connected compo-
nent of size at least 2 and a number of isolated vertices (frozen colourings). Bonamy, Bousquet, and
the first author [5] studied the fraction of vertices that are isolated in Rd+1(G): when G is a large
connected graph, the number of frozen colourings is exponentially smaller than the total number of
colourings. This justifies that, even though the Glauber dynamics might not be irreducible, it can still
be used to sample almost uniform (d+ 1)-colourings of G.

Observe that a d-regular graph G on N vertices has a frozen colouring if and only if G is isomorphic
to an n-lift of Kd+1, the complete graph on d+ 1 vertices, for n(d+ 1) = N . For the “if” part, one can
obtain a frozen colouring of G by colouring each vertex with the corresponding vertex from Kd+1. For
the “only if” part, any frozen colouring splits the vertex set of G into d+ 1 independent sets of equal
size, in this case n. By a simple counting argument, there are n edges within any two sets, and by the
frozen condition, they form a matching. Together with (1), this shows the existence of graphs of large
girth that admit a frozen colouring. As a consequence of Corollary 3, we obtain the following.

Corollary 7. Let n ∈ N, d = d(n) ≥ 3 and g = g(n) such that (d − 1)2g−3 = o(n). Then there exists
a d-regular graph on n vertices and girth at least g that admits a frozen (d+ 1)-colouring.

Recently, Hurley and Pirot [11] studied uniformly random proper m-colourings of sparse graphs with
maximum degree d in the regime d < m logm. Sparsity in this setting is controlled by the girth: the
larger the girth, the less density of edges in local neighbourhoods. The main concern of their paper
is to understand the shattering threshold, the minimum number of colours that are needed for Rm(G)
to resemble Rm(Gn,d), where Gn,d is a random d-regular graph. In this direction, they proved that a
typical m-colouring of a large girth graph is not “rigid” in the following sense.

Theorem 8 ([11]). Let ε > 0 and m ∈ N large enough such that d < (1−ε)m lnm. If G is a graph on n
vertices, maximum degree d and girth at least ln lnn, then a uniformly random proper m-colouring σ
of G satisfies w.h.p.1, for all v ∈ V (G)

(i) for all j ∈ [m], there exists a colouring τ with τ(v) = j, that differs at O(log2 n) vertices with σ.

(ii) for all j ∈ [m], the component of σ in Rm(G) contains a colouring τ with τ(v) = j.

Properties (i) and (ii) deal with the geometry of the solution space (of colourings) and are also shared
with colourings of random graphs. In this direction, a natural problem is to determine which are the
minimum sparsity requirements on G that ensure such properties hold. Hurley and Pirot showed that
the condition g(G) ≥ ln lnn cannot be replaced by g(G) ≥ C, for any constant C > 0. Here, indeed, we
show that lower bound on the girth required in Theorem 8 is essentially optimal, even for m = d+ 1.

1We say that a property holds with high probability (w.h.p.) if the probability it holds tends to 1 as n → ∞.



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

Given an m-colouring σ of G and v ∈ V (G), following [11], we say that v is frozen in σ if τ(v) = σ(v)
for all τ in the same component of Rm(G) as σ. Note that if v is frozen, then condition (ii) is not
satisfied.

Proposition 9. For every γ > 0, d ≥ 3 and sufficiently large n0, there exists n ≥ n0 and a d-regular

graph G on n vertices of girth at least
(

1
2 ln(d−1) − γ

)
ln lnn with the following property: if σ is a

uniformly random proper (d+ 1)-colouring of G, w.h.p. σ has at least n1−o(1) frozen vertices.

We include the proof of this proposition which is a simple application of our previous results.

Proof of Proposition 9. Let δ > 0 be sufficiently small with respect to γ and d. Let g = (1/2 −
δ) logd−1 n0. By Corollary 7, there exists a d-regular graph G0 on n0 vertices of girth at least g that
has a frozen colouring.

Let ε > 0 be sufficiently small and fix n the smallest multiple of n0 such that nε ≥ (d + 1)n0 . As δ
has been chosen small enough, we have that

g(G0) ≥
(

1

2 ln(d− 1)
− γ
)

ln lnn.

Let k = n/n0 and let G be the graph composed of k vertex-disjoint copies of G0. The uniform proba-
bility space over (d + 1)-colourings of G is a product space of k uniform and independent probability
spaces over (d + 1)-colourings of G0. Since G0 admits at least one frozen (d + 1)-colouring, the prob-
ability a uniform random (d + 1)-colouring of G0 is frozen is at least p := (d + 1)−n0 . It follows that
the number of frozen (d + 1)-colourings in the copies of G0 in G stochastically dominates a Binomial
random variable with k trials and probability p. By Chernoff inequality, w.h.p. the number of copies
of G0 where σ induces a frozen colourings is at least

k

2(d+ 1)n0
,

and the number of frozen vertices is at least

n0 ·
k

2(d+ 1)n0
≥ n1−ε

2
.

Since the choice of ε > 0 is arbitrary, we conclude the proof of the proposition.
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[5] Marthe Bonamy, Nicolas Bousquet, and Guillem Perarnau. Frozen (∆ + 1)-colourings of bounded degree
graphs. Combin. Probab. Comput., 30(3):330–343, 2021.

[6] Charles Bordenave. A new proof of friedman’s second eigenvalue theorem and its extension to random lifts.
In Annales Scientifiques de l’École Normale Supérieure, volume 4, pages 1393–1439, 2020.
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