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Abstract

A matroid port is a clutter (antichain of sets) determined by the collection of circuits of a matroid
that contain a fixed point. We study the problem of determining matroid ports all whose elements
have the same size h. This problem has been studied from the cryptographic perspective and it is
related to an analogous problem in matroid theory. We give some general results and then focus on
the binary case. We recast some known results and find all 4-homogeneous binary matroid ports.

1 Introduction

A clutter is a collection of sets that are mutually incomparable with respect to inclusion; the support
of a clutter ∆ is ∪A∈∆A. For a matroid M on the ground set E, the collection of its circuits C(M)
forms a clutter (as do the collections of bases or hyperplanes). We are interested in another clutter
derived from the circuits of a matroid. For an element p ∈ E, the matroid port of M at p is the clutter
Mp defined as1

Mp = {C − p : C ∈ C(M), p ∈ C}.

A clutter ∆ with support Ω is said to be a matroid port if ∆ is the port of some matroid M∆ with
ground set E = Ω ∪ p with p ̸∈ Ω (we refer to Section 2 for more details on how M∆ is constructed).
Matroid ports were introduced by Lehman [2] in connection with game theory, and they are a key
structure in the theory of secret sharing [6], both for the characterization of ideal access structures and
to obtain bounds on the optimal information rate of the scheme.

In this paper we focus on the problem of determining the matroid ports all whose elements have the
same size. We say that a clutter ∆ is h-homogeneous if |A| = h for all A ∈ ∆, and we call h the rank
of the clutter2. Our motivation for studying this problem is twofold, as we next explain.

A particular family of h-homogeneous matroid ports are those that arise as ports of matroids all
whose circuits have size h + 1. Unfortunately, determining such matroids is a hard problem. In [8],
Murty determined the binary matroids all whose circuits have a given size. As we will see throughout
this work, there are usually many more h-homogeneous binary matroid ports than matroids all whose
circuits have size h+1, since being an h-homogeneous matroid port only gives information on the sizes
of the circuits that contain p. In particular, for even h it is proved in [8] that there is only one binary
matroid with circuits of size h + 1 (a single circuit), but we will see in Section 4 that 4-homogeneous
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binary matroid ports are much richer. The question of determining matroids whose circuit-sizes belong
to a small, fixed set, has also been studied [3], but the results do not seem applicable in our situation.

In addition to the relationship with the purely matroid theoretic question studied by Murty, the
problem of determining h-homogeneous matroid ports is of interest in the context of secret sharing
schemes in cryptography. Specifically, from the results in [6] it follows that to provide a complete
description of h-homogeneous matroid ports is equivalent to characterizing the access structures of the
ideal secret sharing schemes whose minimal qualified subsets have h participants. As far as we know,
the only results in this direction have been obtained in [1, 4, 5] for the cases h = 2 and h = 3. The
tools used in these works are mostly of a cryptographic nature. It is also one of our goals to present
these results in a unified, more combinatorial way.

This work has two main contributions. First, we develop some reductions and general results that
are applicable to any h and to all kind of ports, whether binary or not. Then, we treat the concrete
case of h = 4 in the binary case, providing a complete description of 4-homogeneous binary matroid
ports. The proofs will be included in a full version of this extended abstract.

We conclude this introduction by mentioning that we are not aware of results for the case h ⩾ 5 in
general, or for the non-binary case for h = 3, 4. We feel that many of our techniques can be applied
in the binary case for h ⩾ 5, but we are far from even conjecturing a list of 5-homogeneous binary
matroid ports.

2 Preliminaries and reductions

We review in this section several results and characterizations about matroid ports and binary matroid
ports. We refer to Oxley’s book [9] for all terms and results in matroid theory.

A connected matroid M is determined by any one of its ports Mp. We state next the description
of the circuits of M in terms of the sets in the port. We use the notation A1 ⊖ A2 to denote the
symmetric difference of A1 and A2. Also, by min({B1, . . . , Bm}) we denote the inclusion minimal
elements of {B1, . . . , Bm}.

Theorem 1. ([2], [9, Thm. 4.3.3]) Let ∆ be a matroid port with support Ω. Then there is a unique
connected matroid M∆ on Ω ∪ p. Moreover, the circuits of M∆ are

C(M∆) =
{
A ∪ p : A ∈ ∆

}
∪min(

{
A1 ⊖∆ A2 : A1, A2 ∈ ∆, A1 ̸= A2}),

where

A1 ⊖∆ A2 = (A1 ∪A2) \
⋂

A⊆A1∪A2
A∈∆

A.

A clutter ∆ on a finite set E is said to be a K-representable matroid port if it is the port of a matroid
M representable over the field K. In particular, F2-representable matroid ports will be called binary.

Before stating characterizations for matroid ports and binary matroid ports, we need one more defi-
nition. The blocker of a clutter ∆ on E is the clutter b(∆) = min ({B ⊆ E : B ∩A ̸= ∅ for all A ∈ ∆}) .
It is well-known that b(b(∆)) = ∆ . For matroid ports, it is not difficult to check that b(Mp) = (M∗)p,
where M∗ is the dual of M. Thus, the blocker of a matroid port is again a matroid port. As the dual of
a K-representable matroid is also K-representable, the blocker of a binary matroid port is also a binary
matroid port. Note though that the blocker of an h-homogeneous clutter need not be homogeneous.

Theorem 2. 1. The clutter ∆ is a matroid port if and only if whenever A1, A2, A3 ∈ ∆ and x ∈
(A2 ∩A3) \A1 there is A ∈ ∆ with A ⊆

(
(A1 ⊖∆ A2) ∪A3

)
\ {x}.

2. The clutter ∆ is a binary matroid port if and only if either of the following two statements holds:

(a) For all A ∈ ∆ and for B ∈ b(∆) the intersection A ∩B has odd cardinality.
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(b) If A1, A2, A3 ∈ ∆, then there exists A ∈ ∆ with A ⊆ A1 ⊖A2 ⊖A3.

For a proof of this theorem, we refer to [10] and [11]. We mention that there are several other
characterizations of matroid ports that range from excluded minors [10, 11] to independent sequences
and bounds on the optimal information rates in secret sharing schemes [6, Theorem 4.4]. Although we
do not use these characterizations, we use the notion of minors of matroid ports in some constructions,
so we review them here.
Let ∆ be a clutter with support Ω and let Z ⊂ Ω. The deletion of Z is the clutter ∆ \ Z given by

∆ \Z = {A ⊆ Ω \Z : A ∈ ∆}; we refer to the clutter ∆ \ (Ω \Z) as the restriction of ∆ to Z, denoted
by ∆|Z. The contraction of Z is the clutter ∆/Z given by ∆/Z = min({A ⊆ Ω \ Z : A \ Z ∈ ∆}).
When ∆ is the clutter of circuits of a matroid, these definitions give the usual notions of deletion and
contraction in matroids (and we write M/Z instead of C(M)/Z, and so on). Every clutter that can
be obtained from ∆ by repeatedly applying the operations \ and / is called a minor of ∆. Minors of
matroid ports are matroid ports: indeed, we have Mp \ Z = (M\ Z)p and Mp/Z = (M/Z)p.
We say that the clutter ∆ is path-connected if for all x, y ∈ Ω there is a sequence A1, . . . , Ak with

Ai ∈ ∆, x ∈ A1, y ∈ Ak and Ai ∩ Aj ̸= ∅ (if the sets of the clutter are thought of as the hyperedges
of a hypergraph, path-connectivity becomes connectivity in the hypergraph). We say that x and y
are at distance k in ∆ if k is the smallest integer for which such a sequence exists. For any clutter
∆ there exists a unique partition Ω = Ω1 ∪ · · · ∪ Ωs such that the restrictions ∆|Ω1, . . . ,∆|Ωs are
path-connected and ∆ = ∆|Ω1 ∪ · · · ∪ ∆|Ωs. In this situation we say that ∆|Ω1, . . . ,∆|Ωs are the
path-connected components of ∆. It is clear that a clutter is h-homogeneous if and only if each of its
path-connected components is h-homogeneous.
In the particular case that the clutter is a matroid port Mp, being path-connected is equivalent

to the matroid M not being a parallel connection of two smaller matroids (see [9, Sec. 7.1] for the
definition and properties of parallel connection). From this one obtains the following characterization.

Lemma 3. Let ∆ be a clutter whose path-connected components are ∆1, . . . ,∆m. Then ∆ is a matroid
port if and only if ∆1, . . . ,∆m are matroid ports. Moreover, for any field K, ∆ is a K-representable
matroid port if and only if ∆1, . . . ,∆m are K-representable matroid ports.

It was shown in [7] that the diameter of a path-connected matroid port is at most two (by the
diameter we mean, as usual, the maximum of the distances). The following lemma gives a condition
for adding sets to an h-homogeneous binary matroid port of diameter 2 so that the result is an h-
homogeneous binary matroid port of diameter 1. The proof is based on checking condition 2.(a) in
Theorem 2.

Lemma 4. Let ∆ be a path-connected, h-homogeneous binary matroid port with support Ω such that its
blocker b(∆) contains the pairs {x1, y1}, {x2, y2}, . . . , {xs, ys} (with all the xi, yi different among them).
Then s ⩽ h. For s = h, let z3, . . . , zh ̸∈ Ω and define ∆′ = ∆ ∪ {{xi, yi, z3, . . . , zh} : 1 ⩽ i ⩽ h}. If
b(∆) contains no set of the form {v1, . . . , vt} with vi ∈ {xi, yi} and t < h then the clutter ∆′ is an
h-homogeneous binary matroid port.

In addition to restricting to path-connected clutters, we introduce some other reductions. Two
elements x, y in a clutter ∆ are equivalent if for any A ∈ ∆we have |A∩{x, y}| ⩽ 1, and if |A∩{x, y}| = 1
then A⊖ {x, y} ∈ ∆. It is easy to check that equivalent elements in a matroid port Mp correspond to
parallel elements in M. An element q in a clutter is called universal if q ∈

⋂
A∈∆A. If a matroid port

Mp has a universal element q, then {p, q} are a series pair in M (a parallel pair in M∗). The reduction
of a clutter ∆ is the clutter ∆red obtained by removing all but one copy of each equivalence class and
removing all universal elements.

Lemma 5. A clutter ∆ is a matroid port (resp. is a K-representable matroid port) if and only if its
reduced clutter ∆red is so. Moreover, if ∆ has exactly t universal elements, then ∆ is h-homogeneous
if and only if ∆red is (h− t)-homogeneous.
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We say that a clutter is reduced if it is path-connected and ∆red = ∆. By Lemmas 3 and 5, we
can restrict to h-homogeneous reduced matroid ports (although in some of the results in the following
section we drop this restriction if the result is sufficiently simple to state it in general).

3 Homogeneous matroid ports of ranks 1, 2, 3, n− 1 and n

Let ∆ be an h-homogeneous clutter with support Ω, where |Ω| = n. For h = 1 and h = n, the
characterizations of Theorem 2 imply that ∆ =

{
{x1}, . . . , {xn}

}
and ∆ =

{
{x1, . . . , xn}

}
are binary

matroid ports. The following proposition deals with the case h = n− 1. The proof consists in checking
that the collection C(M∆) as in Theorem 1 is indeed the collection of circuits of a matroid.

Proposition 6. Let ∆ be an (n− 1)-homogeneous clutter with support Ω with n = |Ω|. Then, ∆ is a
matroid port. Furthermore, ∆ is a binary matroid port if and only if |∆| = 2.

Now let us consider the case h = 2. Note that a 2-homogeneous clutter with support Ω can be
thought of as the edges of a graph with vertex set Ω (and no isolated vertices). For the complete
multipartite graph G = Kn1,...,nℓ

, for ℓ ⩾ 2 and ni ⩾ 1, the clutter E(G) is a matroid port. Indeed, the
reduced clutter E(Kn1,...,nℓ

)red is the set of edges of a complete graph Kℓ, and E(Kℓ) is the port of a
uniform matroid U2,ℓ+1 at any of its points. By adding equivalent elements we obtain E(Kn1,...,nℓ

). As
U2,4 is the excluded minor for binary matroids, the only one of these ports that is binary is E(Kn1,n2).

The following result states that these are the only 2-homogeneous matroid ports. It can be proved
directly by using the characterizations of matroid ports in the previous section, or by combining results
about secret sharing schemes from [1] and [6].

Theorem 7. Let ∆ be a path connected 2-homogeneous clutter. Then ∆ is a matroid port if and only
if ∆ is isomorphic to E(Kn1,...,nℓ

), and it is is a binary matroid port if and only if ∆ is isomorphic to
E(Kn1,n2).

Finally, in Theorem 8 we present the description of 3-homogeneous reduced binary matroid ports.
The clutters involved in this theorem are defined as follows. The clutter ∆3,0 is the clutter whose ele-
ments are the 7 lines of the Fano plane; that is, ∆3,0 = {{a1, a2, a3}, {a1, a4, a7}, {a1, a5, a6}, {a2, a4, a6},
{a2, a5, a7}, {a3, a4, a5}, {a3, a6, a7}} (as noted in [5], ∆3,0 is the port of the binary affine cube AG(3, 2)
at any of its points). The clutter ∆3,1 is ∆3,0 \ a7 (which can also be thought of as the set of 3-cycles
of K4). We remark that ∆3,0 can be constructed from ∆3,1 by using Lemma 4 (and checking first that
∆3,1 is binary, for instance by using Theorem 2).

Theorem 8. Let ∆ be a reduced 3-homogeneous clutter. Then, ∆ is a binary matroid port if and only
if ∆ is isomorphic either ∆3,0 or ∆3,1.

There are several ways of proving this theorem; one of them is by carefully analysing the circuits of
M∆ as given by Theorem 1 and showing that if ∆ is a 3-homogeneous binary matroid port, then M∆

is a matroid all whose circuits are of size 4. Thus, one can then apply the results by Murty [8].
Alternatively, Theorem 8 follows from the results in [5] and [6] by relating matroid ports to ideal

secret sharing schemes. Moreover, from these papers one can show that if ∆ a 3-homogeneous non-
binary matroid port then ∆ is the port of a matroid of rank three. An example is the clutter defined
by the non-Pappus configuration, obtained by taking all 3-element subsets of a set of size 9 except
those that are lines in the non-Pappus matroid (see [5, Example 3.5]). As far as we know, the complete
description of non-binary 3-homogeneous matroid ports is an open problem.

4 Homogeneous binary matroid ports of rank 4

For 4-homogeneous matroid ports, there are no known results from the secret sharing community, and
the results from [8] do not shed much light, as there is only one binary matroid all whose circuits have



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024
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Figure 1: A geometric representation of the binary 4-spike. The hyperplanes avoiding p are in bijection
with the sets in the port ∆4,1.

size 5 (namely, a single 5-circuit). Note that the corresponding matroid port has just one set, a case
already commented at the beginning of Section 3.
Before stating our main result, we need to introduce yet one more reduction, which can be seen as

an extension of equivalent elements.
Let ∆ be a 4-homogeneous binary matroid port. We say that the pairs {a1, a2} and {b1, b2} are

clones if the following three conditions hold

• |A ∩ {a1, a2, b1, b2}| ≠ 1 for all A ∈ ∆;

• {ai, bj} ̸⊆ A for any A ∈ ∆ and 1 ⩽ i, j ⩽ 2;

• {a1, a2, x, y} ∈ ∆ if and only if {b1, b2, x, y} ∈ ∆ for all x, y ∈ E.

Since the property of being binary and 4-homogeneous is preserved under deletion, the removal of
one of the pairs {a1, a2} or {b1, b2} still leaves a binary 4-homogeneous matroid port. Next we consider
the reverse process, that is, when it is possible to add a pair of clones. The proof of the following
lemma consists in checking condition 2.(b) in Theorem 2.

Lemma 9. Let ∆ be a binary 4-homogeneous matroid port such that there are two elements {a1, a2}
with the property that |A∩{a1, a2}| ∈ {0, 2} for all A ∈ ∆. Let b1, b2 be two elements not in the support
of ∆. Then the clutter ∆′ = ∆ ∪ {A \ {a1, a2} ∪ {b1, b2}| {a1, a2} ⊆ A ∈ ∆} is binary.

Thus, we can assume that ∆ is clone-free. Theorem 10 states that there are only four 4-homogeneous
binary matroid ports that are reduced and clone-free. We next define these four clutters, and show
that they are indeed binary.
The clutter ∆4,1 is the following

∆4,1 = {{x1, x2, y3, x4}, {x1, x3, y2, x4}, {x2, x3, y1, x4}, {y1, y2, y3, x4},
{x1, y2, y3, y4}, {x2, y1, y3, y4}, {x3, y1, y2, y4}, {x1, x2, x3, y4}}.

It is a binary matroid port since b(∆4,1) is the port of the binary 4-spike at its tip (Figure 1 shows
a geometric representation of the binary 4-spike; the elements of ∆4,1 are given by the complements of
the planes that do not contain p, with p removed).

If we apply Lemma 4 to ∆4,1, we obtain the binary matroid port ∆4,0 :

∆4,0 = {{x1, x2, y3, x4}, {x1, x3, y2, x4}, {x2, x3, y1, x4}, {y1, y2, y3, x4},
{x1, y2, y3, y4}, {x2, y1, y3, y4}, {x3, y1, y2, y4}, {x1, x2, x3, y4},
{x1, y1, z1, z2}, {x2, y2, z1, z2}, {x3, y3, z1, z2}, {x4, y4, z1, z2}}.
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Finally, ∆4,2 = ∆4,0 \x4 and ∆4,3 = ∆4,0 \ {x4, y1}. All other deletions of ∆4,0 give ports isomorphic
to ∆4,1, ∆4,2 or ∆4,3, or are not reduced. Note that ∆4,1 = ∆4,0 \ z1, but checking that ∆4,0 is binary
directly is more involved than constructing it from ∆4,1.

Theorem 10. Let ∆ be a reduced 4-homogeneous clutter without clones. Then, ∆ is a binary matroid
port if and only if ∆ is isomorphic to either ∆4,0, or ∆4,1, or ∆4,2, or ∆4,3.

The proof of Theorem 10 is long and entirely new, in the sense that it does not rely on previous
results from either the matroid or the cryptographic communities. We give a very short sketch of the
main ideas for the interested reader.
We start with a reduced and clone-free binary matroid port ∆; being reduced, the clutter ∆ must

contain at least three sets. We exploit the fact that the matroid M∆ is binary and the characterizations
of Theorem 2 to find bounds on the sizes of the intersections of the sets in ∆. From this a careful case
analysis follows, leading to the four clutters ∆4,0,∆4,1,∆4,2 and ∆4,3.
The final part of the proof consists in showing that the clutters ∆4,i, for i ∈ {0, 1, 2, 3}, are terminal,

in the following sense: there is no reduced and clone-free binary matroid port that strictly contains
∆4,0; any reduced and clone-free binary matroid port that strictly contains ∆4,3 also contains a clutter
isomorphic to ∆4,2; and any reduced and clone-free binary matroid port that strictly contains ∆4,1 or
∆4,2 is isomorphic to ∆4,0.
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