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Abstract

Let Z be a finite abelian group of bounded torsion m and f : Z → C a 1-bounded function.
Jamneshan, Shalom, and Tao proved the following inverse theorem: If ∥f∥Uk+1 ≥ δ > 0, then f
correlates non-trivially with a polynomial phase function of degree bounded in terms of m and k.
They also ask whether the same holds with polynomials of degree at most k. In this paper we use the
nilspace approach to investigate this problem proving: a) an inverse theorem for bounded torsion
abelian groups where we replace the polynomial phase functions of degree k by projected polynomial
phase functions of degree k, a notion introduced by the third-named author. b) Relying on a) we
give a short proof of the result of Jamneshan, Shalom, and Tao.

1 Introduction

This work is a shortened version of [6] and some parts have been taken from the latter directly.

Since their introduction in the seminal work of Gowers [9], the study of Gowers norms (denoted
by ∥ · ∥Uk+1) have been central in the area of higher-order Fourier analysis. An important question
related to these norms is inverse theorems. Such results were initially proved for finite cyclic groups
(or intervals of Z) in [12] and state, loosely speaking, that if a function has a large Uk+1-norm then it
must correlate with a nil-function. The precise notion of what a nil-function is depends on the type
of abelian groups we are considering (e.g., cyclic groups, finite torsion vector spaces Fn

p , etc.) We refer
to [7, 10, 14, 16] for more background on these results. In this paper, we will focus on finite abelian
groups with fixed finite torsion m ≥ 1 (or m-torsion abelian groups). That is, abelian groups Z such
that mx = 0 for all x ∈ Z.

Our work is motivated by a recent paper of Jamneshan, Shalom, and Tao [15] where they prove an
inverse theorem for m-torsion abelian groups where the nil-function mentioned above is a polynomial
phase function of degree bounded in terms of m and k. Recall that given abelian groups Z,Z′, a map
P : Z → Z′ and any h ∈ Z, we may take the discrete derivative ∂hP : Z → Z′ defined by ∂hP (x) =
P (x+ h)− P (x). Then we say that P is polynomial of degree at most k if ∂h1 · · · ∂hk+1

(P )(x) = 0 for
all x, h1, . . . , hk+1 ∈ Z. A polynomial phase function of degree at most k is then a polynomial of degree
at most k where Z′ = S1 = {z ∈ C : |z| = 1}.
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Theorem 1. ([15, Theorem 1.12]) Let k,m be positive integers and let δ > 0. Then there exist
constants ε = ε(δ, k,m) > 0 and C = C(k,m) > 0 such that for every finite m-torsion abelian group Z
and every 1-bounded function f : Z → C with ∥f∥Uk+1 > δ, there exists a polynomial phase Q : Z → S1
of degree at most C such that |Ex∈Zf(x)Q(x)| > ε.

This result is inspired by the special case m = p a prime number, where much more is known. In fact
in this case Z is just Fn

p for some integer n, and it is known (see [18, Theorems 1.9 and 1.10] and [19,
Theorem 1.10]) that we can take C(k, p) = k.1 Jamneshan, Shalom, and Tao ask whether this holds
also in the case of m not being a prime [15, Question 1.9]. An important aspect related to the constant
C(k,m) is that if it equals k for any m ∈ N, then this would be the optimal value. The proof of this
fact follows from the following result (valid for any finite abelian group Z, see Proposition 9):

Lemma 2. Let δ > 0. For any 1-bounded function f : Z → C if2 |⟨f,Q⟩| ≥ δ for Q a polynomial phase
function of degree k then ∥f∥Uk+1 ≥ δ.

Any function Q (not necessarily a polynomial phase) satisfying the conclusion of Lemma 2 is called
an obstruction to the Uk+1 norm.3 For k′ > k in general (and in particular, in the case of m-torsion
groups), polynomial phases of degree at most k′ are not necessarily obstructions to the Uk+1 norm.
In this paper, we prove an inverse theorem for m-torsion abelian groups where the nil-functions

appearing are a generalization of polynomial phase functions of degree k but nevertheless, they are
obstructions to the Uk+1 Gowers norm for m-torsion groups. This notion was introduced originally by
the third-named author in the unpublished work [17]. We recall its definition (see [17, Definition 1.2]).

Definition 3. Let Z be a finite abelian group and let k ∈ N. A projected phase polynomial of degree
k on Z is a 1-bounded function ϕ∗τ : Z → C of the following form. There is a finite abelian group Z′, a
surjective homomorphism τ : Z′ → Z, and a polynomial phase function ϕ : Z′ → C of degree at most k,
such that ϕ∗τ (x) = Ey∈τ−1(x)ϕ(y) for every x ∈ Z. If the torsions of Z and Z′ are respectively m and
m′ we say that ϕ∗τ has torsion (m,m′). We say it is rank-preserving if the rank of Z is equal to the
rank of Z′ (where the rank is the minimal number of generators).

We can now state our first main result (see [6, Theorem 1.12] and the discussion below).

Theorem 4. Let k,m be positive integers and let δ > 0. Then there exists γ = γ(k) ∈ N and
ε = ε(δ, k,m) > 0 such that the following holds. For any m-torsion abelian group Z and any 1-bounded
function f : Z → C with ∥f∥Uk+1 ≥ δ, there exists a rank-preserving projected phase polynomial ϕ∗τ
of degree k and torsion (m,mγ) on Z such that |⟨f, ϕ∗τ ⟩| ≥ ε. Conversely, if for any δ′ > 0 we have
|⟨f, ϕ∗τ ⟩| ≥ δ′ for some projected phase polynomial ϕ∗τ of degree k then ∥f∥Uk+1 ≥ δ′.

As we can see, the first part of Theorem 4 is very similar to Theorem 1, but it replaces the polynomial
phase functions of degree C(k,m) by projected phase polynomials of degree k. The second main result
of this paper shows that the former result is strictly stronger.

Theorem 5. Theorem 1 can be deduced from Theorem 4.

2 An inverse theorem with bounded-torsion nilspaces

In this paper, we rely on the theory of nilspaces (see e.g., [1, 2, 13] and references therein). In a few
words, a nilspace is an algebraic object (you can also endow it with a natural topology) that generalizes
abelian groups. An important feature of nilspaces is the concept of step: the class of 1-step nilspaces

1These results are qualitative. We refer to [10, 11] and references therein for quantitative results.
2For any finite abelian group Z and any pair of functions f, g : Z → C we denote ⟨f, g⟩ := Ex∈Zf(x)g(x).
3To be fully precise, we need to fix a family of finite abelian groups F and δ > 0. Then, given a family of functions

T = {Q : Z → C : Z ∈ F} we say that the functions of that family are obstructions to the Uk+1 norm for F if there exists
ϵ = ϵ(δ,F) > 0 such that for any Z ∈ F , any 1-bounded f : Z → C, and any Q ∈ T if |⟨f,Q⟩| > δ then ∥f∥Uk+1 > ϵ.
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equals the class of (affine4) abelian groups. For higher step k ≥ 2, nilspaces can be seen as a tower of
k extensions (or bundles) by abelian groups, called structure groups (see [2, §1.2 and §3.2] for details).
In this paper, we will be interested in the class of nilspaces such that all the abelian groups in these
extensions are m-torsion abelian groups. We denote such nilspaces by m-torsion nilspaces (see [6]).
Similarly to abelian groups, where we have the concept of homomorphism φ : Z → Z′ between abelian

groups, for nilspaces, this generalizes to the concept of nilspace morphism φ : X → Y. The importance
of nilspaces and nilspace morphisms is that we can formulate the most general inverse theorem known
at the time of writing this paper (valid for any compact abelian group or even any nilmanifold) as shown
in [7, Theorem 1.6]. This result can be specialized in the case that we want to find inverse theorems
among various classes of groups (see [7, Theorem 1.7] and [5, §6]). In this paper, we are interested in
the class of finite abelian m-torsion groups. The following result is a version of [6, Theorem 2.3]:

Theorem 6. For any k,m ∈ N and δ > 0 there exists C > 0 such that the following holds. Let Z be
a finite abelian m-torsion group, and let f : Z → C be a 1-bounded function with ∥f∥Uk+1 ≥ δ. Then
there is a finite m-torsion k-step nilspace X of cardinality |X | ≤ C, a morphism ϕ : D1(Z) → X, and

a 1-bounded function F : X → C, such that ⟨f, F ◦ϕ⟩ ≥ 1
2δ

2k+1
.

Hence, we can reduce the question of studying the inverse theorem for m-torsion groups to studying
morphisms ϕ : D1(Z) → X. The nilspace D1(Z) or more generally Dk(Z) for any k ≥ 1 is a special type
of nilspace constructed from any abelian group Z, see [2, §2.2.4] for the precise definition of Dk(Z).
What matters for us is that these nilspaces are the simplest types of nilspaces. For example, by [4,
Lemma A.2] we have that the morphisms φ : Dℓ(Z) → Dk(Z

′) are exactly the polynomials Z → Z′ of
degree at most ⌊k/ℓ⌋.
Let us now outline the rest of the proof idea:

(i) Given any m-torsion nilspace X there exists numbers a1, . . . , ak and γ such that the following
holds. There is a totally surjective bundle morphism5 φ̃ :

∏k
i=1Di(Zai) → X which ismγ periodic.

We let Y :=
∏k

i=1Di(Zai
mγ ). This notion is analogous to the known fact for finite abelian groups

that if A is abelian and m-torsion, then there exists a surjective m-periodic homomorphism
Za → A for some a ∈ N.

(ii) Letting τ̃ : Zr → Z be a surjective homomorphism there exists a morphism g : D1(Zr) → Y such
that φ ◦g = ϕ ◦ τ̃ . Moreover, the map g is mγ′

-periodic for some γ′ = γ′(k). Letting B := Zr
mγ′

the situation can be better seen in the following commutative diagram:

D1(Zr) D1(B) Y

Z X .

φ

g

τ̃

p

ϕ
τ

ψ

(1)

Coming back to the case of m-torsion abelian groups, note that if we have X = A and Y = Za
m

then the map φ ◦g is m-periodic (no need for a γ′ power).

(iii) Recall that we wanted to study the map F ◦ϕ : Z → C. By (1) note that F ◦ϕ ◦τ = F ◦φ ◦ψ.
But now the map ψ is relatively easy to understand as it consists of polynomials of degree at
most k. Hence, by using regular Fourier analysis on the abelian group Y (yes, it is a nilspace,
but you can see it also as an abelian group and do Fourier analysis on it) we can write F ◦φ as
a sum of a bounded number of harmonics which yields the result.

4There is no fixed 0 element, but after choosing any arbitrary element to be 0 these classes can be proved to be equal.
5See [2, Definition 3.3.1].
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3 Proof idea of Theorem 4

The point (i) from the previous section relies on generalizations of two well-known results for finite
abelian groups. The first is that letting A be a finite abelian group there exists a ∈ N and a surjective
homomorphism Za → A. The second is that if we further assume that A is m-torsion, then the former
surjective homomorphism can be proved to be m-periodic. We need generalizations of these results
for m-torsion nilspaces. Generalizing the first result, namely, that for a finite k-step nilspace X there
exists a fibration

∏k
i=1Di(Zai) → X is a non-trivial result shown by the authors, [4, Theorem 4.4] (see

also [6, Corollary 5.4]).
For the second result, the periodicity of morphisms of the form

∏k
i=1Di(Zai) → X when X is m-

torsion, let us prove here the core lemma (a version of [6, Lemma 5.1]) that leads to the full result (see
[6, Corollary 5.4] for details).

Lemma 7. For any positive integer k there exists α > 0 such that the following holds. Let A be any
m-torsion abelian group and let ϕ : Z → A be a polynomial of degree at most k. Then ϕ is mα-periodic.

Proof. By [4, Theorem A.6], any polynomial ϕ of the latter type has an expression of the form ϕ(x) =∑k
i=1 ai

(
x
i

)
for some ai ∈ A. Let us prove now that

(
x+mk+1

i

)
−

(
x
i

)
is a multiple of m for any x ∈ Z

and i ∈ [k]. For any prime p|m suppose that m = pcm′ where p and m′ are coprime. If we prove that(
x+mk+1

i

)
−

(
x
i

)
is a multiple of pc then we are done (as we can then argue similarly for every prime

dividing m). Using the identity
(
x
i

)
= x(x−1)···(x−i+1)

i we have
(
x+mk+1

i

)
−

(
x
i

)
= mk+1

i! Q(x,m, i) for

some integer-valued polynomial Q. If we prove that mk+1

i! is always a multiple of pc then we will be
done. Note that the largest power of p dividing mk+1 is precisely c(k+1). On the other hand, in i! we
have at most

∑∞
j=1⌊i/pj⌋ ≤

∑∞
j=1 i/p

j = i
p−1 ≤ k

p−1 factors of p. But as for any c ∈ N and p prime we

have that k
p−1 + c ≤ c(k + 1) the result follows.

To prove (ii), we again rely on generalizing a known result for abelian groups. Namely, let A,C be
abelian groups, φ : C → A be a surjective homomorphism, and q : Zn → A be any homomorphism.
Then there exists q̃ : Zn → C such that φ ◦ q̃ = q. This result generalizes to nilspaces as shown in [5,
Corollary A.6]. Thus, the diagram (1) follows.

Proof sketch of first part of Theorem 4. We apply Theorem 6 and let X be the resulting nilspace of
torsion m, ϕ the resulting morphism D1(Z) → X, and F : X → C the resulting 1-bounded function

such that Ex∈Zf(x)F (ϕ(x)) ≥ δ2
k+1

/2. We construct now Diagram (1) as explained before. Let
h := F ◦φ : Y → C. Then Ex∈Zf(x)F (ϕ(x)) = Ey∈Bf ◦τ(y)h ◦ψ(y). By the Fourier decomposition

of h on the finite abelian group Y, and the pigeonhole principle, there is a character χ ∈ B̂ such that
ε ≤ Ey∈Bf(τ(y))χ(ψ(y)) = Ex∈Zf(x)Ey∈τ−1(x)χ(ψ(y)), which proves the result with ϕ := χ ◦ψ.

The second part of Theorem 4 follows from the next results.

Lemma 8. Let ϕ∗τ be a projected phase polynomial of degree k on a finite abelian group. Then
∥ϕ∗τ∥∗Uk+1 ≤ 1 where ∥ · ∥∗

Uk+1 is the Uk+1-dual-norm.

Proof. Recall the definition ∥ϕ∗τ∥∗Uk+1 = supg:Z→C:∥g∥
Uk+1≤1 |⟨ϕ∗τ , g⟩|. Denoting by Z′ the (abelian

group) domain of τ , the map τ Jk+1K : Ck+1(Z′) → Ck+1(Z) defined by τ Jk+1K(c) : v 7→ τ(c(v)) is a
surjective homomorphism. It follows that for every map g : Z → C we have ∥g ◦τ∥Uk+1(Z′) = ∥g∥Uk+1(Z).
Then we have |⟨ϕ∗τ , g⟩Z| = |Ex∈ZEy∈τ−1(x)g ◦τ(y)ϕ(y)| = |⟨g ◦τ, ϕ⟩Z′ | ≤ ∥g ◦τ∥Uk+1(Z′)∥ϕ∥∗Uk+1(Z′)

=

∥g∥Uk+1(Z)∥ϕ∥∗Uk+1(Z′)
. Therefore ∥ϕ∗τ∥∗Uk+1(Z)

≤ ∥ϕ∥∗
Uk+1(Z)

. Since ϕ is a phase polynomial of degree

k, we have that |⟨ϕ, g⟩| = ∥ϕg∥U1 ≤ ∥ϕg∥Uk+1 = ∥g∥Uk+1 , see [11, (2.1)]. Thus ∥ϕ∥∗
Uk+1(Z′)

≤ 1.

Proposition 9. Let ϕ∗τ be a projected phase polynomial of degree k on a finite abelian group Z, and
suppose that f : Z → C satisfies |⟨f, ϕ∗τ ⟩| ≥ δ. Then ∥f∥Uk+1 ≥ δ.

Proof. By Lemma 8, δ ≤ |⟨f, ϕ∗τ ⟩| ≤ ∥f∥Uk+1∥ϕ∗τ∥∗Uk+1 ≤ ∥f∥Uk+1 .
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4 Proof of Theorem 5

The idea is to prove that the projected phase polynomials appearing in Theorem 4 can be written
as averages of polynomials of possibly larger degree. We shall prove this below and then apply it to
give an alternative proof of [15, Theorem 1.12]. Given a surjective homomorphism τ : B → Z, by a
polynomial cross-section for τ we mean a map ι : Z → B which is polynomial and such that τ ◦ ι is the
identity map on Z. The main result that we will use is the following.

Theorem 10. Let m,m′ ∈ N. Then there exists a constant C(m,m′) ∈ N such that the following holds.
Let Z, B be finite abelian groups of torsion m and m′ respectively and let τ : B → Z be a surjective
homomorphism. Then there exists a polynomial cross-section ι : Z → B of degree at most C(m,m′).

The full proof of Theorem 10 can split into several lemmas, see [6, §5.1] for details. Here we are only
going to show the first one. See also [15, Lemma 8.2] for an alternative approach.

Lemma 11. Let d ≥ s be positive integers and let p be a prime. Let φ : Zpd → Zps be the map x

mod pd 7→ x mod ps. Let ι : Zps → Zpd be defined by n mod ps 7→ n mod pd for each n ∈ [0, ps − 1].
Then ι is a polynomial cross-section for φ of degree at most (d− s)ps + 1.

The argument has similarities with the proof of [5, Proposition B.2]. We want to prove that if we
take sufficiently many derivatives of ι then we obtain the 0 map. Without loss of generality, it suffices
to take derivatives ∂aι(x) := ι(x + a) − ι(x) with respect to the generator a = 1 ∈ Zps . Note that
∂1ι(x) = 1 if x ̸= ps − 1 and ∂1ι(p

s − 1) = 1− ps. Taking one more derivative, ∂21ι(x) = 0 if x ̸= ps − 1,
∂21ι(p

s − 2) = −ps and ∂21ι(p
s − 1) = ps. To take derivatives of higher degree, as is standard, we can

view the map ∂21ι as a vector in Zps

pd
and take the derivatives by left-multiplying this vector by the

forward difference matrix, i.e. the circulant matrix Cps :=

−1 1 0 ··· 0
0 −1 1 ··· 0
...

. . .
1 0 ··· 0 −1

 ∈ Mps×ps(Z). Known

results on circulant matrices imply the following fact.

Lemma 12. For any prime p and any integer s ≥ 1 all the entries of Cps

ps are multiples of p.

Proof. By equation (8) in [8], for every q ∈ N we have Cq
ps =

∑q
j=0

(
q
j

)
(−1)jAq−j

ps , where Aps is the

cyclic permutation matrix (see [8]). Taking q = ps, we claim that it suffices to prove that
(
ps

j

)
= ps!

j!(ps−j)!
is a multiple of p if 0 < j < ps. In fact, the contributions for j = 0 and j = ps cancel each other if
p is odd as A0

ps = Aps

ps = idps×ps and thus
(
ps

0

)
(−1)0idps×ps +

(
ps

ps

)
(−1)p

s
idps×ps = 0. If p = 2 we have(

2s

0

)
(−1)0id2s×2s +

(
2s

2s

)
(−1)2

s
id2s×2s = 2id2s×2s which is a multiple of p = 2 as claimed. To see the

general case 0 < j < ps, note first that the number of p factors in j! is precisely
∑s−1

i=1 ⌊j/pi⌋. Thus, it
suffices to prove that

∑s−1
i=1 ⌊j/pi⌋+

∑s−1
i=1 ⌊(ps−j)/pi⌋ < 1+p+ · · ·+ps−1 = ps−1

p−1 , where the right hand

side is the number of p factors of ps!. The left hand side can be estimated using the bound
∑s−1

i=1 ⌊j/pi⌋ ≤∑s−1
i=1 j/p

i = j ps−1−1
(p−1)ps−1 . Hence, the left side is bounded above by j ps−1−1

(p−1)ps−1 +(ps− j) ps−1−1
(p−1)ps−1 = ps−p

p−1 ,

which is smaller than the number of p factors in ps!.

Proof of Lemma 11. Note that after two derivatives, the map ∂21ι has already a factor ps. Each time
that we differentiate ps additional times we add (at least) a factor p by Lemma 12. It follows that

∂kp
s+2

1 ι(x) is a multiple of pk+s for any x ∈ Zps . Thus, if k + s = d then we have ∂kp
s+2

1 ι = 0 mod pd.
Hence ι is a polynomial of degree at most (d− s)ps + 1.

The rest of the proof of Theorem 10 follows by first taking the Sylow decomposition on Z and B, thus
reducing the problem to the case of p-groups. And then, by proving that any surjective homomorphism
between p-groups can be reduced (via isomorphisms and projections) to the case of Lemma 11.
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Proof of Theorem 5. By Theorem 4, the function f correlates with a projected phase polynomial
(χ ◦ψ)∗τ of degree k and torsion (m,mOk(1)), for some homomorphism τ : B → Z. By Theorem
10 there exists a polynomial cross-section ι : Z → B of degree Om,k(1). Moreover, for any u ∈ ker(τ)
we have that ιu(x) := ι(x) + u is clearly also a polynomial cross-section. Recall that (χ ◦ψ)∗τ is
the map Ey∈τ−1(x)χ(ψ(y)) defined for x ∈ Z. However, for any x ∈ Z we have Ey∈τ−1(x)χ(ψ(y)) =
Eu∈ker(τ)χ(ψ(ιu(x))). Thus ε < |Ex∈Zf(x)Eu∈ker(τ)χ(ψ(ιu(x)))| = |Eu∈ker(τ)Ex∈Zf(x)χ(ψ(ιu(x)))|.
Hence, ε < |Ex∈Zf(x)χ(ψ(ιu(x)))| for some u ∈ ker(τ). Finally note that by [4, Lemma A.2], ψ ◦ ιu is
in fact a polynomial map with degree bounded by deg(ι)k = Om,k(1). The result follows.
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