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Abstract

Equitable partitions have been applied to a wide variety of topics, ranging from algebraic graph
theory to clustering. An equitable partition of a graph is called k-homogeneous if each cell has size
k. Abiad et al. showed that the existence of a 2-homogeneous equitable partition can be decided in
polynomial time for cographs. In this work, we provide an alternative proof of this result, which in
turn gives rise to a more general algorithm for graph classes which admit a unique tree representation.
We show how the result on cographs follows from our method, and explore further applications to
other graph classes.

1 Introduction

Equitable partitions are a versatile tool that have been used in many different fields of mathematics,
for example for deriving sharp eigenvalue bounds on the independence number [7], constructing self-
orthogonal codes [6] and clustering in various types of networks [10, 12]. A natural question is therefore,
how efficiently such partitions can be computed. However, little is known about the complexity of
computing equitable partitions in general [11] and the few known results focus on particular kinds
of partitions or graphs. For instance, the coarsest equitable partition of a graph can be computed
in polynomial time, see for example Corneil and Gotlieb [4] and Bastert [2]. Abiad et al. [1] showed
that determining the existence of a 2-homogeneous equitable partition is NP-hard in general, but can
be done in quadratic time for cographs. Cographs are known to have a tree representation which is
unique up to isomorphism [5], a property that extends to many other graph classes. In this work, we
derive a more general algorithm to compute 2-homogeneous equitable partitions in graphs that have a
unique tree representation, implying the known result from [1] on cographs. Next, we explore for which
other graph classes our more method can efficiently compute 2-homogeneous equitable partitions. We
propose several graph classes that fall under the more general framework, and briefly discuss their
structural differences and similarities with cographs.

2 Preliminaries

We consider undirected, simple and loopless graphs. A graph is denoted by G = (V,E) and its
number of vertices by n. The set {1, 2, . . . , n} is abbreviated as [n]. Let G = (V,E) be a graph and
let P = {V1, V2, . . . , Vm}, with m ∈ [n], be a partition of the vertex set V . We refer to the subsets Vi
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as cells. A partition is called equitable (or regular) if for all i, j, each vertex in Vi has the same number
of neighbors in Vj . We call a partition k-homogeneous if every cell has size k.

An automorphism ϕ of a graph is called an involution if it has order two. It is fixed-point-free if no
vertex is mapped to itself. The following Lemma by Abiad et al. establishes a one-to-one correspondence
between 2-homogeneous equitable partitions and automorphisms with the aforementioned properties.

Lemma 1 ([1, Lemma 17]). Let G be a graph on n vertices. Then G has an automorphism being an
involution without fixed points if and only if G admits an equitable partition with n

2 cells each having
size 2.

3 An efficient algorithm for computing 2-homogeneous equitable partitions

In general, it is NP-hard to decide whether an arbitrary graph admits a 2-homogeneous equitable
partition, see [1]. Nevertheless, there exist graph classes for which the existence of a 2-homogeneous
equitable partition can be established in polynomial time. Lemma 1 was also used in [1] to show
that this is the case for the class of cographs (see Section 4.1 for a definition). This was done using
a characterization of cographs in terms of twin classes. However, cographs can be characterized in
many other ways, most notably by a tree representation which is unique up to isomorphism [5]. In this
section, we derive a more general algorithm to compute 2-homogeneous equitable partitions for graphs
that allow a unique tree representation, and show how the result on cographs follows from our method.

For our algorithm, we consider the following class of graphs.

Definition 2. Let G be the class of all graphs satisfying the following conditions.

(C1) There exists a polynomial-time computable rooted tree representation T which uniquely charac-
terizes the graphs of this class up to isomorphism. Each leaf of the tree corresponds to a graph
on a subset of vertices from the original graph and each internal vertex to a graph operation on
the subgraphs represented by the subtrees rooted at its (unordered) children.

(C2) A fixed-point-free involution on a graph G from this class corresponds one-to-one with a label-
preserving automorphism ϕ on T plus a sequence of automorphisms ψ1, . . . , ψm on the subgraphs
corresponding to its leaves such that

• ϕ is an involution on the leaves of T ,

• only maps leaf i to itself if ψi is a fixed-point-free involution.

(C3) The existence of a fixed-point-free involution should be decidable in polynomial time for the sub-
graphs represented by the leaves.

(C4) Isomorphism of the subgraphs represented by the leaves should be decidable in polynomial time.

In (C1), (C3) and (C4), ‘polynomial’ means polynomial in the number of vertices of the graph.

In general, the automorphism problem on rooted labeled trees is known to be polynomial-time
solvable, see Colbourn and Booth [3]. However, in the context of Lemma 1 we need to determine the
existence of a particular type of automorphism which is also an involution without fixed points. In
terms of the unique tree representation, this means that there should be an automorphism which swaps
the leaves pairwisely or leaves them in place. However, if a leaf is not swapped, its associated subgraph
must admit a fixed-point-free involution internally. In Algorithm 1, we propose a recursive procedure
which determines the existence of such a mapping for labeled rooted trees representing graphs in G.
Here Tv denotes the subtree of a tree T rooted at vertex v and we define Gv to be the induced subgraph
of G corresponding to the subgraph associated with leaf v in T . Since it is assumed that isomorphism
can be determined efficiently for the graphs associated with the leaves of T (see Condition (C4)), we
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Figure 1: A j-numbered tree which admits a fixed-point-free involution on the leaves.

Algorithm 1: hasNiceAutomorphism

Input : A (labeled) rooted tree T representing a graph G ∈ G with root r and j-numbers
assigned to each vertex, following the procedure from [3, Lemma 2.1]

Output: Does T admit an automorphism which is a fixed-point-free involution on the leaf
vertices?

hasNiceAutomorphism(T , r)
for each child v of r with distinct j-number do

let kv be the number of children with the same j-number as v
if kv is odd then

if v is a leaf and Gv does not admit a fixed-point-free involution then
return false

else
if hasNiceAutomorphism(Tv, v) = false then

return false
return true

will assume that the leaves are labeled such that two leaves have the same label if and only if their
associated subgraphs are isomorphic. The algorithm assumes that the input tree has been labeled using
the j-numbering procedure by Colbourn and Booth [3]. These numbers are assigned in a top-down
fashion to each vertex of the tree and, together with the depth of a vertex, partition the tree into
its orbits under the automorphism group. A j-numbering can be computed in linear time, hence the
running time of Algorithm 1 is polynomial.
Before we show correctness of Algorithm 1, we provide some intuition. Consider the rooted tree T

given in Figure 1. It is clear that an automorphism of T could swap the subtrees rooted at u and v, as
they are isomorphic and have the same parent. This is a fixed-point-free involution on the leaves that
descend from u and v. The subtree of w cannot be mapped to another part of the graph in its entirety,
but if we go one level down, we see that interchanging the children of w also results in a fixed-point-free
involution on the remaining leaves.

Lemma 3. Let G ∈ G and let T be the unique (labeled) rooted tree representing G. Algorithm 1 returns
“true” if and only if T admits an automorphism which

(i) is an involution on the leaves;

(ii) only maps a leaf to itself if the associated subgraph admits a fixed-point-free involution.

The running time of the algorithm is O(m(m+ p(n)), where p is a polynomial and m and n denote the
number of vertices of T and G respectively.

If m is polynomial in n, the running time of Algorithm 1 is also polynomial in n. Note that the
number of vertices in a tree equals at most twice the number of leaves, so in order for this to hold, we
only need the number of leaves of T to be polynomial in n. Combining this with Lemma 3, we obtain
our main result.
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Theorem 4. Let G ∈ G be a graph with n vertices such that the number of leaves of its unique tree
representation T is polynomial in n. Then the problem of deciding whether G admits an equitable
partition with n

2 cells of size 2 can be solved in poly(n) time.

Note that Algorithm 1 can easily be modified to keep track of the partial mappings and return an
automorphism ψ of T satisfying conditions (i) and (ii). If we additionally compute a fixed-point-free
involution for each Gv corresponding to a leaf v with odd kv, we obtain a fixed-point-free involutionary
automorphism of G, whose orbits form a 2-homogeneous equitable partition of G. Hence computing
equitable partitions with n

2 cells of size 2 can also be done in polynomial time.

4 Applications

4.1 Cographs

In [1], it was shown that one can determine the existence of a 2-homogeneous equitable partition in
quadratic time for the class of cographs. In this section, we provide an alternative proof of this result
using Algorithm 1.

A cograph is a graph which does not have a P4 as an induced subgraph. Alternatively, it can be
characterized as follows.

Proposition 5 (Corneil et al. [5]). A cograph is defined recursively using the following three rules.

(i) A graph on a single vertex is a cograph.

(ii) If G1, . . . , Gk are cographs, then so is G1 ∪ · · · ∪Gk.

(iii) If G is a cograph, then so is its complement G.

Note that we may equivalently replace (iii) by the condition that the join of two cographs is again
a cograph. Using this characterization, the structure of a cograph can uniquely be represented by a
rooted tree.

Let G be a cograph. A cotree of G is a rooted tree whose inner vertices each have a label 0 or 1. A
leaf vertex corresponds to an induced subgraph on a single vertex and the subtree rooted at a vertex
with label 0 or 1 corresponds to the union or join respectively of the subgraphs represented by its
children. Note that two vertices form an edge in G if and only if their least common ancestor in the
cotree has label 1. If we require the labels on a root-leaf path to be alternating, this tree is unique,
see Corneil et al. [5]. The same authors observed that the graph isomorphism problem is therefore
polynomial-time solvable for cographs.

Since isomorphism can be detected in polynomial time for cographs by studying the cotree, it makes
sense that an automorphism of a cograph should correspond to a certain automorphism of its cotree.
We make this intuition more precise in the following lemma.

Lemma 6. Let G be a cograph with unique cotree T with alternating 0/1-labels. Then, ϕ : V → V is
an automorphism of G if and only if there exists an automorphism ψ on T such that ψ|V = ϕ and
which respects the 0/1-labeling.

Lemma 6 implies that cographs satisfy Condition (C2). Combined with the uniqueness of the cotree,
this implies that cographs form a subclass of G. From Theorem 4, we then obtain an alternative proof
for the following complexity result from [1].

Corollary 7 ([1, Theorem 25]). The problem of deciding whether a cograph admits an equitable partition
with n

2 cells of size 2 can be solved in O(n2) time.
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4.2 Other graph classes with tree representations

In the previous section, we showed how Algorithm 1 can be used to efficiently determine the existence of
2-homogeneous equitable partition in cographs. Several generalizations of cographs have been proposed
in the literature, as well as other graph classes with a unique tree representation. Therefore, a natural
direction for future research is to examine to which of these graphs our algorithm can be applied.
Below, we highlight three promising graph classes, and indicate which further steps need to be taken
to apply our approach.

Tree-cographs As we have seen in Proposition 5, cographs can be defined recursively by starting
with a set of isolated vertices and repeatedly applying disjoint union and complementation op-
erations. A tree-cograph is a graph which can be obtained by applying the same operations to
a set of trees. Tree-cographs generalize both the class of trees and cographs. It was shown by
Tinhofer [13] that these graphs can be uniquely characterized by a tree representation. Contrary
to cographs, the inner vertices of this tree represent the disjoint union and complementation
operations and the leaves each correspond to a tree. It is easy to see that this class of graphs
satisfies Conditions (C1), (C3) and (C4). However, as the proof of Lemma 6 makes use of the
properties of the join operator and a characterization of adjacency in cographs, an alternative
proof is needed to show that tree-cographs are a subclass of G.

P4-sparse graphs Cographs are the class of graphs which contain no induced P4. A natural general-
ization of this concept is the class of P4-sparse graphs. A graph is P4-sparse if every set of five
vertices induces at most one P4. Jamison and Olariu [8] showed that a graph is P4-sparse if and
only if it can be constructed from a set of isolated vertices through applying the disjoint union,
join and a third operator denoted by ⃝2 (see [8] for more details). Moreover, this constructive
characterization gives rise to a unique tree representation. Once again, an alternative to Lemma 6
is needed to show inclusion in G, as Condition (C2) is not trivially satisfied.

Interval graphs An interval graph is the intersection graph of a set of intervals on the line. Interval
graphs can be represented by a PQ-tree [9], whose leaves correspond to the maximal cliques of
the associated graph. Colbourn and Booth [3] proved that an automorphism of an interval graph
correspond one-to-one with an automorphism of its PQ-tree and a certain permutation of the
vertices. This gives us a direct link between the fixed-point-free involutions of an interval graph
and automorphisms of its PQ-tree, as needed for Condition (C2). However, to apply Algorithm 1,
two additional properties of the PQ-tree need to be taken into consideration. Firstly, some vertices
of the PQ-tree have ordered children which may not be exchanged arbitrarily. These restrictions
can easily be incorporated into the algorithm. Secondly, the maximal cliques of an interval
graph, and hence the subgraphs associated with the leaves of the PQ-tree, may not be disjoint.
Algorithm 1 traverses a given tree in a top-down manner and attempts to pair up each subtree
individually to obtain a fixed-point-free automorphism. For PQ-trees, consistency needs to be
ensured for vertices appearing in multiple subtrees.
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