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Abstract

The 3-decomposition conjecture, postulated by Hoffmann-Ostenhof in 2011, is a major open
question about the structure of cubic graphs: Can the edge set of every cubic graph be decomposed
into a spanning tree, a disjoint union of cycles, and a matching? To date, the conjecture remains
wide open. Towards a deeper structural understanding of 3-decompositions, we investigate the set of
all 3-decompositions of a graph as a whole. On the one side, we provide a graph class that displays
extremal behaviour: up to isomorphism, only one 3-decomposition exists. On the other side, we
show that in general, 3-decompositions are more flexible. This contrasts the existing approaches
which focus on the construction of precisely one decomposition of the considered graph. We exploit
these insights towards a verification of the 3-decomposition conjecture on Bilu-Linial expanders.

1 Introduction

All graphs in this paper are simple and finite. A 3-decomposition of a cubic graph G is a triple (T,C,M)
of subgraphs of G where T is a spanning tree of G, C is 2-regular, and M is a matching such
that {E(T ), E(C), E(M)} is a partition of E(G). (See Figure 1 for examples of 3-decompositions.) The
3-decomposition conjecture, postulated by Hoffmann-Ostenhof [6], is a central open question about the
structure of cubic graphs.

3-Decomposition Conjecture. Every connected cubic graph has a 3-decomposition.

The 3-decomposition conjecture has received great interest, and numerous results verify the con-
jecture on subclasses (e.g., planar [7], treewidth-3 [5], pathwidth-4 [2], and claw-free graphs [1]). Li
and Cui [10] proved that the following weaker variant of the 3-decomposition conjecture is true: Every
connected cubic graph can be decomposed into a spanning tree, a disjoint union of cycles, and a disjoint
union of paths of length at most 2. There is ample literature on 3-decompositions when the considered

Figure 1: 3-decompositions of K4, K3,3, and three distinct 3-decompositions of the tricorn graph GT .
Spanning tree edges are straight and green, cycle edges are wavy blue, and matching-edges are zigzag-
shaped and orange. It holds minMATCH(GT ) = 0 and maxMATCH(GT ) = 3.
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graph G admits one of the following two extremes: a Hamiltonian path (a tree maximizing the number
of degree-2 vertices) or a HIST [6] (a spanning tree which is homeomorphically irreducible, i.e., free of
degree-2 vertices). However, little is known about the structure of the set of all 3-decompositions of
a cubic graph. Towards a deeper structural understanding of cubic graphs we analyze the set of all
3-decompositions of a graph (class). We focus on the following three questions.

Q 1. Are there graphs with a unique 3-decomposition?

Consider the two graph invariants

minMATCH(G) := min{∥M∥ : (T,C,M) is a 3-decomposition of G}, and

maxMATCH(G) := max{∥M∥ : (T,C,M) is a 3-decomposition of G},

where ∥ · ∥ denotes the size (i.e., the number of edges) of a graph.

Q 2. Which graphs (or graph classes) are extremal with respect to minMATCH and maxMATCH, respec-
tively? How flexible is the set of all 3-decompositions of a graph with respect to the number of matching
edges it contains?

Q 3. How can we exploit the observed flexibility among 3-decompositions towards proving the 3-decom-
position conjecture?

Our contribution. We positively answer Question 1 by providing an infinite class of graphs with
the property that each graph in the class has a unique 3-decomposition up to isomorphism (Theorem 4).
It is noteworthy that all graphs in this class have a HIST and it is known that a HIST of a cubic graph
naturally corresponds to a 3-decomposition [6]. Hence, we further investigate for which graphs there
exist HIST-free 3-decompositions. Assuming the 3-decomposition conjecture to hold, we prove that
every graph of connectivity 2 has a HIST-free 3-decomposition (Theorem 5). We used the computer
to verify that apart from K4 and K3,3 every 3-connected cubic graph of order at most 20 has a 3-
decomposition without a HIST (Theorem 6).
Concerning Question 2, we prove that there exists a family of graphs (Hn)n∈N with minMATCH(Hn) = 0

for all n ∈ N and limn→∞maxMATCH(Hn) = ∞ (Proposition 8). We complement this result by proving
the existence of two other graph families (Gn)n∈N and (G′

n)n∈N that satisfy limn→∞maxMATCH(Gn) = 0
(Theorem 4) and limn→∞minMATCH(G

′
n) = ∞ (Proposition 7).

We give a partial answer to Question 3 in Section 5 where we highlight that the flexibility of 3-
decompositions can be exploited in order to provide a tighter analysis of 3-decompositions of Bilu-
Linial expanders. This broadens our understanding of 3-decompositions since expander graphs show
completely different behavior compared to the previously studied classes.
Due to space restrictions, some of the proofs are omitted or shortened to proof sketches.

Further related work. The recent results on the 3-decomposition conjecture are surveyed in the
introduction of [2]. Hoffmann-Ostenhof, Noguchi, and Ozeki studied the existence of HISTs in cubic
graphs [8]. Deciding whether a graph allows for a HIST is in general an intractable problem, which
remains intractable even if the input is restricted to the class of cubic graphs [4].

2 Preliminaries

For two integers a and b we set [a, b] := {a, a+ 1, . . . , b}. We denote the path of order n by Pn, the
complete graph of order n by Kn, and the complete bipartite graph with one part on n vertices and
the other part on m vertices by Kn,m. The K̇4 is a graph obtained from K4 by subdividing precisely
one edge. Analogously, the ˙K3,3 is obtained by subdividing an edge of the K3,3. If u and v are vertices
of a tree T , then uTv denotes the unique u-v-path in T . For a graph G and an edge subset E′ ⊆ E(G)
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we set G[E′] to be the graph with edge set E′ and vertex set {v ∈ V (G) : ∃u ∈ V (G) : uv ∈ E′}. A
non-empty graph G is k-connected (k-edge connected) if for each two distinct vertices u and v of G there
are at least k internally vertex-disjoint (edge-disjoint) u-v-paths in G. The maximum number k ∈ N
such that G is k-connected (k-edge connected) is the connectivity (edge connectivity) of G. In contrast
to general graphs, the connectivity and the edge-connectivity of a cubic graph are equal. If E′ ⊆ E(G)
such that G[E(G) \ E′] has more components than G, then E′ is an |E′|-edge separator, otherwise
we call G[E′] non-separating. Let E′ ⊆ E(G). If there exists a bipartition {U,W} of V (G) such
that E′ = {uw ∈ E(G) : u ∈ U,w ∈ W}, then E′ is a cut set of G. A bridge is a 1-edge separator. If G
is cubic and has a 3-decomposition (T,C,M), then G is 3-decomposable.

Lemma 1. Let G be a cubic graph with a 3-decomposition (T,C,M).
1. ∥G∥ = 3/2|V (G)| and ∥C∥+ ∥M∥ = ∥G∥ − ∥T∥ = |V (G)|/2 + 1 .
2. C and M are non-separating subgraphs of G.
3. Each vertex v ∈ V (G) is either a degree-3 vertex of T , or a degree-2 vertex of T and contained

in M , or a degree-1 vertex of T and contained in C. In particular, ∥C∥ ≥ 3

Observation 2 (Reformulation of [8], Theorem 2). If G is a cubic graph, then minMATCH(G) = 0
if and only if there exists a HIST T of G, which is the case precisely if (T,G[E(G) \ E(T ), ∅]) is a
3-decomposition of G.

Lemma 3. If G is a 3-decomposable graph and ℓ := min{∥C∥ : C is a non-separating cycle in G}, then

0 ≤ minMATCH(G) ≤ maxMATCH(G) ≤ 1/2|V (G)|+ 1− ℓ ≤ 1/2|V (G)| − 2.

3 Graphs with unique 3-decompositions

In this section, we tackle Question 1. In fact, already among the smallest cubic graphs there are
two examples of graphs with a unique 3-decomposition up to isomorphism: K4 and K3,3. The K4

decomposes into a K1,3, a 3-cycle, and an empty matching; the K3,3 decomposes into a tree known
as the H-graph, a 4-cycle, and an empty matching (see Figure 1). Observe that, in accordance with
Observation 2, each of the two trees is a HIST. We argue that the decompositions are unique: By
Lemma 1.3 each of the decompositions contains a cycle. Observe that a shortest cycle in K4 is a
3-cycle and each two 3-cycles of K4 can be mapped to each other by an automorphism of K4. The
remaining edges form a K1,3. In particular, no larger cycle can be part of a 3-decomposition of K4. The
uniqueness of the decomposition of K3,3 can be proven in analogy to this. In fact, there are infinitely
many graphs with this property:

Theorem 4. There exists an infinite family G of graphs which have precisely one 3-decomposition up
to isomorphism. Further, minMATCH(G) = maxMATCH(G) = 0 for all G ∈ G.

Proof sketch. The class T of homeomorphically irreducible subcubic trees contains infinitely many
non-isomorphic trees. Let G be the family of cubic graphs obtained by the following construction:
Let T ∈ T . For each leaf ℓ of T let Kℓ be either a copy of K̇4 or ˙K3,3. Take the disjoint union of T and
the graphs in {Kℓ : degT (ℓ) = 1} and identify the degree-2 vertex of Kℓ with ℓ for each leaf ℓ of T . The
ingredients for the uniqueness proof are as follows: For a graph G ∈ G all edges of the corresponding
tree T ∈ T are bridges of the construction, further each appended K̇4 or ˙K3,3 has (up to isomorphism)
precisely one non-separating cycle. The resulting decomposition is free of matching-edges.

The situation observed at the beginning of this section (the only option of obtaining a 3-decomposition
corresponds to a HIST) never occurs in the setting of connectivity-2 graphs if the 3-decomposition con-
jecture holds:

Theorem 5. If the 3-decomposition conjecture holds, then every cubic graph with connectivity 2 has a
3-decomposition with a non-empty matching.
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Proof. We show the following stronger claim: If the 3-decomposition conjecture holds, then every
connected cubic graph which has a 2-edge separator of non-incident edges has a 3-decomposition with
a non-empty matching. The theorem follows immediately from this claim since if two incident edges
e1, e2 form a 2-edge separator of a cubic graph, then the unique edge incident to e1 and e2 is a bridge
(and, hence, the connectivity is at most 1). Assume that the 3-decomposition conjecture holds and
let G be a cubic graph with a HIST T and a 2-edge separator of non-incident edges {u1v1, u2v2}. The
graph G \ {u1v1, u2v2} has precisely two components G′ and G′′.

u1

u2

v1

v2

G′ G′′G :

u1

u2

v1

v2

G′ G′′H : x′ x′′

Set C := G[E(G) \ E(T )] and consider the 3-decomposition (T,C, ∅) of G. Since {u1v1, u2v2} is a
separator we obtain {u1v1, u2v2} ∩ E(C) = ∅ and, hence {u1v1, u2v2} ⊆ E(T ). Precisely one of the
following situations occurs: u1Tu2 ⊆ G′ or v1Tv2 ⊆ G′′. We may assume that u1Tu2 ⊆ G′.

We construct a graph H as follows: add two new vertices x′ and x′′ to G, remove u1v1, and add
the edges u1x

′ and x′′v1. Take the disjoint union of this graph with two copies K ′ and K ′′ of K̇4

and identify x′ (resp. x′′) with the degree-2 vertex of K ′ (resp. K ′′). The resulting graph H has a
3-decomposition (TH , CH ,MH) by assumption. Since u1v1 and u2v2 are not incident ∥u1Tu2∥ ≥ 1
and we may choose an edge e ∈ E(u1Tu2). Now, merge the 3-decomposition induced by the HIST
and the one of H together to one for G. Take the decomposition from H in G′′ and in G′ a
slight modification of the decomposition induced by the original HIST: Remove the edge e from
the spanning tree part of T in G′ to disconnect u1 and u2 in the spanning forest in G′ and in-
stead connect them via the spanning tree TH in G′′, which connects v1 and v2. We may add e
to the matching since the decomposition used on G′ so far had an empty matching. More for-
mally ((T ∩G′) ∪ (TH ∩G′′) ∪ (u1, v1) ∪ (u2, v2) \ {e}, (C ∩G′) ∪ (CH ∩G′′), {e} ∪ (MH ∩G′′)) is a 3-
decomposition with a non-empty matching for G.

Theorem 6. Apart from K4 and K3,3, every 3-connected cubic graph of order at most 20 has a 3-
decomposition with a non-empty matching1.

4 Flexibility among 3-decompositions

Proposition 7. For every n ∈ N there exists a 2-connected cubic graph G′
n with minMATCH(G

′
n) = n.

Proof sketch. We refrain from giving a technical description of G′
n and refer to Figure 2 for the con-

struction and a 3-decomposition of G′
n with precisely n matching-edges. In particular, the graph G′

n

is 3-decomposable and minMATCH(G
′
n) ≤ n. Assume that (Tn, Cn,Mn) is a 3-decomposition of G′

n.
Observe that the only non-separating cycles in G′

n are the four triangles (in Figure 2: two triangles
on the left and two triangles on the right of the drawing). At most one of the two left triangles and
at most one of the two right triangles can be contained in Cn since Cn is a disjoint union of separat-
ing cycles by Lemma 3. Further, since Cn is non-empty we obtain ∥Cn∥ ∈ {3, 6}. From Lemma 1
follows ∥Cn∥+ ∥Mn∥ = n+ 6 and with this, ∥Mn∥ ≥ n.

Theorem 8. For every odd number n ∈ N there exists a cubic graph Hn with minMATCH(Hn) = 0
and maxMATCH(Hn) = n. Further, there exists a 3-decomposition of Hn with n − 3l edges in the
matching for every l ∈ [0, (n+1)/4].

1 https://gitlab.rlp.net/obachtle/reductions-for-the-3-decomposition-conjecture, March 2024.

https://gitlab.rlp.net/obachtle/reductions-for-the-3-decomposition-conjecture
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v1 v2 v3 vn+1

u1 u2 u3 un+1

Figure 2: The graph G′
n is a 2-connected cubic graph with minMATCH(G

′
n) = n.

Proof sketch. We only discuss the two extreme cases in this sketch. Fix an odd number n ∈ N and
set k := (n+3)/2. Let P = v1v2 . . . vk be the k-vertex path. Let Q1 and Qk be two copies of P3

and let K2,K3, . . . ,Kk−1 be k − 2 copies of K1,3. Take the disjoint union of P , Q1, Qk, and all Ki

for i ∈ [2, k − 1]. Now, identify the degree-2 vertex of Q1 (resp. Qk) with v1 (resp. vk). Further, for
each i ∈ [2, k − 1] identify vi with a degree-1 vertex of Ki. The resulting tree T has 2k − 2 degree-3
and 2k degree-1 vertices. Choose a planar embedding of T and connect the leaves of T by the outer facial
cycle. Then, the resulting graph Hn is cubic and has the HIST T . Thus, minMATCH(Hn) = 0. Fur-
ther, maxMATCH(Hn) = n since the shortest non-separating cycle is of length 3 and a 3-decomposition
with n matching-edges can be obtained as follows: Let Cn be the triangle induced by the vertices of Q1

in Hn. The following edges form the matching Mn: for i ∈ [2, k − 1] the edge of the outer face joining
two vertices of Ki and the edge joining the degree-3 vertex of the Ki to P , and the edge of the outer
face joining two vertices of Qk. Let Tn = Hn[E(Hn) − E(Cn) − E(Mn)]. The triple (Tn, Cn,Mn) is a
3-decomposition of Hn with ∥Mn∥ = n. For n = 3 the 3-decompositions are depicted in the third and
the fifth graph in Figure 1.

5 3-Decompositions of Bilu-Linial Expanders

Bilu and Linial [3] give a concrete construction for a family of expander graphs by a series of lifting
operations associated to random signings. See [9] for a survey on expanders. In the following, we
investigate how 3-decompositions can be lifted. This illustrates how exploiting the flexibility of 3-
decompositions, yields a fruitful approach to verify the 3-decomposition conjecture for more classes of
graphs. The 2-lift of a graph G equipped with a signing s : E(G) → {−1, 1} is the graph lift(G, s) with

V (lift(G, s)) = {v0 : v ∈ V (G)} ∪ {v1 : v ∈ V (G)},

E(lift(G, s)) =
⋃

uv∈s−1(1)

{u0v0, u1v1} ∪
⋃

uv∈s−1(−1)

{u0v1, u1v0}.

The vertices v0 and v1 are fibers of v and deglift(G,s)(v0) = deglift(G,s)(v1) = degG(v). For a subgraph H
of G, we set lift(H, s) := lift(H, s|E(H)). Observe that lift(H, s) is a subgraph of lift(G, s). The signing
of a path P ⊆ G is s(P ) :=

∏
e∈E(P ) s(e). In general, the existence of HISTs is not preserved by 2-lifts:

If G is a cubic graph with a HIST T and s ≡ −1, then lift(G, s) is bipartite and |V (lift(G, s))| is a
multiple of 4. It follows with [8, Corollary 3] that lift(G, s) does not have a HIST. In contrast to this,
3-decompositions can be lifted under certain preconditions on the signing and the matching-edges.
Note that the lift of a connected graph is not necessarily connected again. E.g., if G is connected

and s ≡ 1, then lift(G, s) is isomorphic to the disjoint union of two copies of G. The assumptions
of Theorem 10 ensure that the considered lift is connected. In the following, we characterize signings
which yield a disconnected lift in order to show that 3-decompositions can be lifted in this case.

Lemma 9. Let G be a connected graph with a signing s. The following are equivalent:
1. lift(G, s) is disconnected.
2. s−1(−1) is empty or a cut set of G.
3. lift(G, s) is isomorphic to two disjoint copies of G.
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In particular, if G is 3-decomposable and lift(G, s) is disconnected, then each of the two components
of lift(G, s) is 3-decomposable.

Theorem 10. Let (T,C,M) be a 3-decomposition of a cubic graph G with a signing s. If there
exists xy ∈ E(M) such that s(xy) = −1 and s(xTy) = 1, then the following is a 3-decomposition
of lift(G, s):

(lift(T, s) + x0y1, lift(C, s), lift(M, s)− x0y1).

A random variable s : E(G) → {−1, 1} is a random signing of G if the sign of each edge is chosen
uniformly at random.

Lemma 11. Let G be a graph with a 3-decomposition (T,C,M). If s is a random signing of G, then

P [∃xy ∈ E(M) : s(xy) = −1 ∧ s(xTy) = 1] = 1− (3/4)∥M∥ .

Corollary 12. If G is a cubic graph and s is the random signing on G, then the probability that
the construction of Theorem 10 yields a 3-decomposition of lift(G, s) is maximized if the considered
3-decomposition (T,C,M) of G satisfies ∥M∥ = maxMATCH(G).

When iteratively applying the lifting operation, the number of edges in the matching mk of the
k-th lift Gk is 2k(m0 − 1) + 1. Thus, the probability that iteratively applying Theorem 10 yields a
3-decomposition of Gk is at least

∏k−1
l=0

(
1− (3/4)ml

)
.

One can significantly improve this bound using that each lift yields at least two valid 3-decompositions
(use x1y0 instead of x0y1 in Theorem 10) and, hence, two distinct possible edges in the matching.

6 Further research

The most pressing question is whether the flexibility of 3-decompositions can be exploited in order
to prove the 3-decomposition conjecture on expander graphs or on symmetric graphs. Further, it is
desirable to classify all graphs which have a unique 3-decomposition up to isomorphism.
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