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Abstract

We present two novel six-colorings of the Euclidean plane that avoid monochromatic pairs of
points at unit distance in five colors and monochromatic pairs at another specified distance d in the
sixth color. Such colorings have previously been known to exist for 0.41 <

√
2−1 ≤ d ≤ 1/

√
5 < 0.45.

Our results significantly expand that range to 0.354 ≤ d ≤ 0.657, the first improvement in 30 years.
The constructions underlying this notably were derived by formalizing colorings suggested by a
custom machine learning approach.

1 Introduction

The Hadwiger-Nelson problem asks for the smallest number of colors needed to color the points of the
Euclidean plane E2 without any two points a unit distance apart having the same color. Viewing the
plane as an infinite graph, with an edge between any two points if and only if the distance between
them is 1, motivates why this number is also referred to as the chromatic number of the plane and
denoted by χ(E2). The problem goes back to 1950 and has since become one of the most enduring and
famous open problems in combinatorial geometry and graph theory. For an extensive history of the
problem and results related to it, we refer the reader to Jensen and Toft [7] as well as Soifer [9, 17].
By the de Bruijn–Erdős theorem [1], and therefore assuming the axiom of choice, the problem is

equivalent to finding the largest possible chromatic number of a finite unit distance graph, that is
a graph that can be embedded into the plane such that any two vertices are adjacent if and only
if the corresponding points are at unit distance. The triangle is one obvious such graph, giving a
lower bound of 3, and the Moser spindle [8] is the most famous example of a graph giving a lower
bound of 4. There had been no improvement to that lower bound since 1950 until de Grey famously
established that χ(E2) ≥ 5 through a graph of order 1581 in 2018 [2]. Simplifying and reducing the
size of this construction has been of great interest to the extent of being the topic of a Polymath
project [4, 3, 10, 11].

Regarding upper bounds, there is a large number of distinct 7-colorings of the plane that avoid
monochromatic pairs at unit distance, the first of which (using a tiling of the plane with congruent
regular hexagons) was already observed back in 1950 by Isbell [9, 17]. This upper bound of χ(E2) ≤ 7
has remained unchanged since and many variants of the original question have therefore been proposed
in the hopes of shedding some light on why this problem has proven so stubborn. To state one such
variant, we say that an n-coloring of the plane has coloring type (d1, . . . , dn) if color i does not realize
distance di [14, 15]. This gives a measurement of how close this coloring is to achieving the original
goal and can be seen as a defining a natural ‘off-diagonal’ variant of the original problem. Finding a
coloring of type (1, 1, 1, 1, 1, 1) would obviously improve the upper bound of χ(E2) to 6.
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Stechkin found a coloring of type (1, 1, 1, 1, 1/2, 1/2), which was published by Raiskii in 1970 [12],
and Woodall found a coloring of type (1, 1, 1, 1/

√
3, 1/

√
3, 1/

√
12) in 1973 [18]. The first six-coloring

to feature a non-unit distance in only one color has type (1, 1, 1, 1, 1, 1/
√
5) and was found by Soifer in

1991 [15]. Hoffman and Soifer also found a coloring of type (1, 1, 1, 1, 1,
√
2 − 1) in 1993 [5, 6]. Both

of these constructions are in fact part of a family that realizes (1, 1, 1, 1, 1, d) for any 1/
√
5 ≤ d ≤√

2 − 1 [6, 16, 17], leading Soifer [13] to pose the “still open and extremely difficult” [9] problem of
determining the continuum of six colorings X6, that is the set of all d for which there exists a six-
coloring of the plane of type (1, 1, 1, 1, 1, d). To the best of our knowledge, no improvements have been
suggested in the last 30 years.

We propose two novel six-colorings of the plane, one parameterized by d and the other fixed, that
together significantly expand the range of d known to be in X6. The first is a valid coloring of type
(1, 1, 1, 1, 1, d) as long as 0.354 ≤ d ≤ 0.553 and the second covers the range of 0.418 ≤ d ≤ 0.657.

Theorem 1. X6 contains the closed interval [0.354, 0.657].

It should be noted that both constructions were derived by formalizing colorings that were suggested
by a custom machine learning approach in which a Neural Network was trained to represent a coloring
of a specified type or range of types. We will briefly touch upon this in Section 4 and otherwise go
into more detail about this approach and potential other applications in a separate publication. This
work is intended to give a formal justification of Theorem 1, with the first coloring being explored in
Section 2 and the second in Section 3.

2 A construction for 0.354 ≤ d ≤ 0.553

The first constructions is made up of four different polytopal shapes, a detailed description of which is
given in the appendix. The equidiagonal pentagon and the equilateral triangle respectively described
Figure 3 and Figure 4 together are be colored with the sixth color (red) in which we are avoiding points
at distance d. The octagons described in Figure 5 receive three of the other five colors (orange, green,
and blue) and the hexagons described in Figure 6 receive the remaining two (yellow and turquoise).
All shapes are uniquely parameterized by the choice of d, with the exception of the pentagon, which
has an additional degree of freedom in the form of α1. We will later determine the range of valid α1

depending on d numerically and see that this additional variable can be fixed by linearly interpolating
between two extremal values (though other options can also be valid depending on d).

Figure 1: Illustration of the first coloring with circles at unit distance (dotted) and distance d (dashed)
highlighted at three critical points.
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A copy of three pentagons, one triangle, three octagons and two hexagons together form the building
block of the first coloring.Note that the triangle disappears as d approaches the upper end of the valid
spectrum. Looking at the overall construction in Figure 1, it is visually clear that the only conditions
that are at risk making this construction invalid are given be the following set of constraints, where
the variables are defined alongside the corresponding shape in the appendix:

s4 ≤ d (1)

s5 ≥ d (2)

w1 ≤ 1 (3)

w2 ≤ 1 (4)

w3 ≤ 1 (5)

h1 + h3 + d ≥ 1 (6)

Unfortunately we were unable to derive a closed form expression for the range of d for which a valid
choice of α1 can be found. However, it is easy to numerically verify that for d ∈ [0.354, 0.553] such a
choice can be made. Furthermore, by linearly interpolating between the two extreme points, that is by
choosing α1 = 113.7 + (d− 0.354) 14.11/0.299, we can remove the additional degree of freedom in the
definition of the pentagon. Finally, we note that there is again always an appropriate choice for the
color on the boundaries between the shapes.

Figure 2: Illustration of the second coloring with circles at unit distance (dotted), and distance dmax

(dashed), and distance distance dmin (dash-dotted) highlighted at six critical points.

3 A construction for 0.418 ≤ d ≤ 0.657

Let dmax be the real root of d4 +5
√
3d3 +18d2 − 3

√
3d− 7 = 0 closest to 0.65 and dmin =

√
3− 2 dmax.

Note that a closed form for dmax is given by

dmax = −(5
√
3)/4 + 1/2

(
27/4 + 1/3 (7290− 15

√
1821)1/3 + (5 (486 +

√
1821))1/3/32/3

)1/2
+ 1/2

(
27/2− 1/3 (7290− 15

√
1821)1/3 − (5(486 +

√
1821))1/3/32/3

+ 9/4
(
3/(27/4 + 1/3 (7290− 15

√
1821)1/3 + (5(486 +

√
1821))1/3/32/3))

)1/2)1/2
.

We can easily verify numerically that dmin ≤ 0.418 ≤ d ≤ 0.657 ≤ dmax and the second construction will
in fact be valid for any d ∈ [dmin, dmax]. It is again made up of four different polytopal shapes, a detailed
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description of which is given in the appendix. The pentagon and square described in Figure 7 together
are colored with the sixth color (red) in which we are avoiding points at distance d. The heptagon
described in Figure 8 receives four of the other five colors (orange, green, yellow, and turquoise) while
hexagon described in Figure 8 receives the last remaining color (blue). A copy of two pentagons, one
square, four heptagons and one hexagon together form the building block of the second coloring, which
is illustrated in Figure 2.

4 Discussion and Outlook

We conclude by noting that there was a significant technical component to these new constructions.
We developed a custom machine learning approach in which we had a Neural Network represent a
(probabilistic) six-coloring of the plane. The parameters of the network were update according to a
batched form of the loss given by the probabilistic likelihood that two points at unit distance (or at
distance d) are monochromatic with the right color(s). The resulting output was detailed enough to
inspire the above constructions, though formally describing them and verifying their correctness still
required a fair amount of manual effort.
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Appendix

A Building blocks of the first coloring

h1
h2

s1

s2

s3

α1

α2

α3

s1 = d/2 csc(α1/2)

t1 = 2arccos
(
csc(α1/2)/4

)
− α1

s3 = 2d sin(t1/2)

h1 = d cos(t1/2)

h2 = h1 − (d/2) cot(α1/2)

s2 =
√
h22 + (d− s3)2/4

α2 = 90◦ − α1/2 + arcsin(h2/s2)

α3 = 270◦ − α1/2− α2

Figure 3: An equidiagonal pentagon with each diagonal of length d, highlighted by dashed lines, used
for the red color avoiding points at distance d in the first coloring.

s4

h3

t2 =
(√

1− (s1 sin(30◦ + α1/2))2 − s1 cos(30◦ + α1/2)
)
/
√
3

s4 =
√
3 max(t2 − d, 0)

h3 = 3/2 max(t2 − d, 0)

Figure 4: An equilateral triangle, used for the red color avoiding points at distance d in the first
coloring.

150◦

α4

α5

α6

s4

s3

s1

s5

d

h4
h6

h5

w1

w2 w1 =
√
3 t2

t3 = 180◦ − arccos
(
(1− w2

1 − s21)/(−2w1s1)
)

w2 = s1 cos(t3) +
√

1− s21 sin(t3)
2

h4 =
√
1− (s4 + s3)2/4

h5 =
√
t22 − w2

1/4− h3 +max(t2 − d, 0)

h6 =
√
s21 − (w1 − w2)2/4

s5 =
√
h27 + (w2 − s3)2/4

α4 = 180◦ − α1/2

α5 = arctan
(
2h7/(w2 − s3)

)
+ t3

α6 = 390◦ − α4 − α5

Figure 5: An axisymmetric octagon in which four of the diagonals have unit length, highlighted by
dotted lines, and two of the sides have length d, highlighted by dashed lines. Used for the orange, green
and blue color avoiding points at unit distance in the first coloring.
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s2

s5
s2

s5

s2

s5

w3

α7

α7

α7
α8

α8

α8

α7 = 360◦ − α2 − α5

α8 = 360◦ − α3 − α6 = 240◦ − α7

t4 =
√

s22 + s25 − 2s2s5 cos(α7)

t5 = arcsin(s5 sin(α7)/t4)

w3 =
√

t24 + s22 + 2t4s2 cos(α7 + α8 + t5)

Figure 6: A hexagon with two angles and two side lengths. Used for the yellow and turqouise color
avoiding points at unit distance in the first coloring. Note that it is in general not axisymmetric.

B Building blocks of the second coloring

√
27/14

1/7

s2

s3

dmin/
√
2

dmin

dmin

Figure 7: An axisymmetric pentagon and a square together are used for the red color avoiding points
at distance d in the second coloring. s2 and s3 are implicitly defined in Figure 8.

dmin/
√
2

(1 − dmin)/2

(
√
3 − dmin)/2

s3 dmax

s2

√
27/14

135◦

135 ◦

α1

Figure 8: A heptagon in which four of the diagonals have unit length, highlighted by dotted lines.
Used for the orange, green, yellow, and turquoise color avoiding points at unit distance in the second
coloring. We do not give a closed form solution for s2 and s3 but note that they are well defined. The
angle α1 is defined in Figure 9.

1/7

√
21/7

√
48/7

α2α1

α1 = 45◦ + arccos(47/49)/4

α2 = 90◦ − arccos(47/49)/2

Figure 9: A centrosymmetric hexagon in which three of the diagonals have unit length, highlighted by
dotted lines. Used for the blue color avoiding points at unit distance in the second coloring.
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