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3MTA-BME Lendület Arithmetic Combinatorics Research Group, Műegyetem rkp. 3., H-1111
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Abstract

Let Fk,d(n) be the maximal size of a set A ⊆ {1, 2, . . . , n} such that the equation

a1a2 . . . ak = xd, a1 < a2 < . . . < ak

has no solution with a1, a2, . . . , ak ∈ A and integer x. Erdős, Sárközy and T. Sós studied Fk,2, and
gave bounds when k = 2, 3, 4, 6 and also in the general case. We study the problem for d = 3, and
provide bounds for k = 2, 3, 4 and 6, furthermore, in the general case as well. In particular, we
refute an 18-year-old conjecture of Verstraëte.

We also introduce another function fk,d closely related to Fk,d: While the original problem
requires a1, . . . , ak to all be distinct, we can relax this and only require that the multiset of the ai’s
cannot be partitioned into d-tuples where each d-tuple consists of d copies of the same number.

1 Introduction

The problem of the solvability of equations of the form

a1a2 . . . ak = x2, a1 < a2 < . . . < ak

in a set A ⊆ [n] = {1, 2, . . . , n} first appeared in a 1995 paper of Erdős, Sárközy and T. Sós [3]. They
investigated the maximal size of a set A such that the equation cannot be solved in A, that is, there are
no distinct a1, . . . , ak ∈ A whose product is a perfect square. This motivates the following definitions:
Let Fk,d(n) be the maximal size of a set A ⊆ [n] such that

a1a2 . . . ak = xd, a1 < a2 < . . . < ak (1)
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has no solution with a1, a2, . . . , ak ∈ A and integer x. Similarly, let fk,d(n) be the maximal size of a
set A ⊆ [n] such that

a1a2 . . . ak = xd (2)

has no solution with a1, a2, . . . , ak ∈ A and integer x, except trivial solutions that we specify below.
If we allow some of the ai’s in equation (2) to coincide, some trivial solutions do arise: It is clear, for
instance, that a1 = . . . = ad will yield a solution to the equation a1 . . . ad = xd. Let us call a solution
trivial if the multiset of the ai’s can be partitioned into d-tuples where each d-tuple consists of d copies
of the same number: see for example (a1a1a1)(a2a2a2)(a3a3a3) = x3 for k = 9, d = 3. Note that trivial
solutions arise only if d | k. Let fk,d(n) be the maximal size of a set A ⊆ [n] such that the equation
a1a2 . . . ak = xd does not have any nontrivial solution with a1, a2, . . . , ak ∈ A. Note that fk,d ≤ Fk,d.
With our notation, Erdős, Sárközy and T. Sós [3] proved the following results (and also gave bounds

for Fk,2 for every k):

Theorem 1 (Erdős, Sárközy, T. Sós). For every ℓ ∈ Z+, we have

(i) F2,2(n) =
(

6
π2 + o(1)

)
n;

(ii) n3/4

(logn)3/2
≪ F4,2(n)− π(n) ≪ n3/4

(logn)3/2
;

(iii) n2/3

(logn)4/3
≪ F6,2(n)−

(
π(n) + π

(
n
2

))
≪ n7/9 log n.

Later Győri [5] and the fourth named author [7] improved the upper bound for F6,2(n)−
(
π(n) + π

(
n
2

))
.

The current best upper bound is

F6,2(n)−
(
π(n) + π

(n
2

))
≪ n2/3(log n)2

1/3−1/3+o(1).

For general cases, the current best lower bound estimates have been proved recently by the fourth
named author and Vizer [8].
Note that the case 2 | k is closely related to (generalized) multiplicative Sidon sets, as a solution

to the (multiplicative) Sidon equation a1 . . . ak = b1 . . . bk provides a solution a1 . . . akb1 . . . bk = x2.
However, the case 2 ∤ k seems to be much more difficult. Erdős, Sárközy and T. Sós proved the
following results:

Theorem 2 (Erdős, Sárközy, T. Sós). For every ℓ ∈ Z+ and ε > 0, we have

(i) n
(logn)1+ε ≪ n− F3,2(n) ≤ n− f3,2(n) ≪ n(log n)

e log 2
2

−1+ε;

(ii) lim inf
n→∞

F2ℓ+1,2(n)

n
≥ log 2 = 0.69 . . . ;

(iii) n
(logn)2

≪ n− F2ℓ+1,2(n).

Note that similar bounds can be proved for the functions fk,2(n).
It remained an interesting problem to find the right shape of the function F2ℓ+1,2 for ℓ ≥ 2. Very

recently, Tao [10] proved that for every k ≥ 4 there exists some constant ck > 0 such that Fk,2(n) ≤
(1− ck + o(1))n as n → ∞.

Based on the work of Erdős, Sárközy, and T. Sós, Verstraëte [11] studied a similar problem: He
aimed to find the maximal size of a set A ⊆ [n] such that no product of k distinct elements of A is in
the value set of a given polynomial f ∈ Z[x]. He showed that for a certain class of polynomials the
answer is Θ(n), for another class it is Θ(π(n)), and conjectured that these are the only two possibilities:

Conjecture 3. Let f ∈ Z[x] and let k be a positive integer. Then, for some constant ρ = ρ(k, f)
depending only on k and f , the maximal size of a set A ⊆ [n] such that no product of k distinct
elements of A is in the value set of f is either (ρ+ o(1))n or (ρ+ o(1))π(n) as n → ∞.

For further related results, see [6, 9].
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2 Our results

We investigated the original problem in the case d = 3, and provided bounds for both Fk,3 and fk,3. As
expected, several additional difficulties arise compared to the case d = 2. To overcome these, various
new ideas are needed of combinatorial and number theoretic nature. We summarize our results below.
For k = 2, the following bounds hold:

Theorem 4. There exist positive constants c1 and c2 such that

c1n
2/3 < n− F2,3(n) ≤ n− f2,3(n) < c2n

2/3.

For the case k = 3 we prove that f3,3(n)/n converges to a constant c3,3 ∈ (0, 1), which we can
approximate (theoretically to arbitrary precision):

Theorem 5. There exists a constant 0.6224 ≤ c3,3 ≤ 0.6420 such that

f3,3(n) = (c3,3 + o(1))n.

(An analogous result holds for F3,3(n), as well.)
In the case k = 4 we show that for large n, the following bounds hold. Our proofs generalize and

extend ideas from [3] used for the estimation of F3,2(n).

Theorem 6. Let ε > 0. There exists some n0(ε) such that for every n ≥ n0(ε) we have

n

(log n)2+ε
< n− F4,3(n) ≤ n− f4,3(n) <

n

(log n)
1− e log 3

2
√
3
−ε

.

For k = 6 we obtained the following results:

Theorem 7. There exist positive constants c1 and c2 such that

c1
n3/4

(log n)3/2
< f6,3(n)− π(n) < c2

n3/4

(log n)3/2
.

Theorem 8. For F6,3(n) the following holds:

F6,3(n) = (1 + o(1))
n log logn

log n
.

Note that Theorem 8 refutes Conjecture 3 of Verstraëte [11].
We also give bounds for larger values of k, all the results and proofs are contained in the preprint

[4].

3 Proof ideas

The different behaviours of the function fk,3 (and Fk,3) can be illustrated by the cases k = 2, 3, 4, 6.
Here we give a brief outline of the proof ideas in these cases.

3.1

For proving Theorem 4 we shall notice that a1a2 = x3 holds if and only if the product of the cubefree
parts of a1 and a2 is a perfect cube. That is, if the cubefree part of a1 is uv2 (where uv is squarefree),
then in a solution the cubefree part of a2 has to be u2v. With the help of this observation one can
show the exact result

f2,3(n) = n−
∑

1≤u<v
gcd(u,v)=1

uv2≤n
u,v squarefree

⌊
3

√
n

uv2

⌋
,

for getting the claimed bound we have to estimate this sum. (Also, note that F2,3(n) = f2,3(n) + 1.)
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3.2

For getting the bound in Theorem 5 let r be a fixed positive integer and let pi denote the ith prime.
Each cubefree positive integer a can be written as

a = pα1
1 pα2

2 . . . pαr
r a′,

where α1, . . . , αr ∈ {0, 1, 2} and a′ is cubefree satisfying gcd(a′, p1p2 . . . pr) = 1. Here pα1
1 pα2

2 . . . pαr
r

is the pr-smooth and a′ is the pr+1-rough part of the number a. Observe that the product of three
integers is a perfect cube if and only if so are the product of their pr-smooth parts and the product of
their pr+1-rough parts. In particular, for a fixed a′ there cannot be three elements in A with pr+1-rough
part a′ such that the product of their pr-smooth parts is a perfect cube. Note that the product of three
pr-smooth numbers is a cube if and only if the sum of their exponent vectors (α1, α2, . . . , αr) add up
to (0, 0, . . . , 0) calculating coordinate-wise modulo 3. Alternatively, if we consider the exponent vectors
as elements of Fr

3, they form a nontrivial 3-term arithmetic progression (3AP). Let Lr(i) be the set of
pr-smooth cubefree integers up to i:

Lr(i) := {pα1
1 pα2

2 . . . pαr
r : α1, . . . , αr ∈ {0, 1, 2}} ∩ [i],

and let sr(i) denote the largest possible size of a subset of Lr(i) avoiding nontrivial solutions to
a1a2a3 = x3. Note that sr(i) is the size of the largest 3AP-free subset of

{(α1, . . . , αr) ∈ {0, 1, 2}r : α1 log p1 + · · ·+ αr log pr ≤ log i},

if we consider this set as a subset of Fr
3. Clearly, for every i ≥ p21 . . . p

2
r , we have sr(i) = sr(p

2
1 . . . p

2
r)

(whose common value is r3(Fr
3), the largest possible size of a 3AP-free subset of Fr

3). For getting good
numerical bounds we shall calculate these sr(i) values, for which we used IP solvers. Note that the
exact value of r3(Fr

3) is known only for r ≤ 6, thus significantly improving our numerical bounds is a
very difficult task.

3.3

First we sketch the proof of the lower bound in Theorem 6 (which provides upper bounds for f4,3 and
F4,3).
Let A ⊆ {1, 2, . . . , n} be a subset such that a1a2a3a4 ̸= x3 if ai ∈ A, a1 < a2 < a3 < a4 and let

D = {d1, . . . , dt} be the set of all positive integers d such that d ≤ n1/3 and Ω(d) ≤ 1
3 log log n, where

Ω(d) denotes the number of prime factors of d (counted by multiplicity). A calculation yields that

t = |D| > n1/3

(log n)1+
1
3
log 1

3
− 1

3
+ ε

3

.

Let H be the 3-uniform hypergraph on the vertex set {P1, . . . , Pt} such that {Pi, Pj , Pk} is an edge
in H if and only if didjdk ∈ A. Let M be the set of those m ∈ [n] such that m /∈ A and m = didjdk for
some 1 ≤ i < j < k ≤ t, then |A| ≤ n− |M |.

For a fixed m ∈ M let h(m) denote the number of triples (di, dj , dk) such that m = didjdk, 1 ≤ i <

j < k ≤ t. If m = pk11 pk22 · · · pkrr ∈ M , then

Ω(m) = Ω(di) + Ω(dj) + Ω(dk) ≤ log log n,

hence

h(m) ≤ τ3(m) =

r∏
i=1

(
ki + 2

2

)
≤

r∏
i=1

3ki = 3Ω(m) ≤ 3log logn = (log n)log 3,

where τ3(m) denotes the number of triples (a, b, c) with a, b, c ∈ Z+ such that m = abc.
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If H contains a K3
4 (a subhypergraph G with vertex set V = {Pi1 , Pi2 , Pi3 , Pi4} such that V \ {Pij}

is an edge in G for every j ∈ {1, 2, 3, 4}), then for some di1 < di2 < di3 < di4 and

a1 = di1di2di3 , a2 = di1di2di4 , a3 = di1di3di4 , a4 = di2di3di4

we have a1 < a2 < a3 < a4, a1, a2, a3, a4 ∈ A and a1a2a3a4 = (di1di2di3di4)
3. Therefore, H does not

contain any K3
4 . Hence, by a result of de Caen [1] there exists a constant δ > 0 such that there at least

δt3 triples (i, j, k), 1 ≤ i < j < k ≤ t such that {Pi, Pj , Pk} is not an edge in H.
Let h = max

m∈M
h(m) ≤ (log n)log 3. If {Pi, Pj , Pk} /∈ H, 1 ≤ i < j < k ≤ t, then m = didjdk has at

most h decompositions as a product of three positive integers, which gives the following bound on M :

|M | ≥ δt3

h
≫ n

(log n)3+log 1
3
−1+ε · (log n)log 3

=
n

(log n)2+ε
,

which completes the proof of the lower bound.
The construction providing the upper bound is the set of the integers a such that

(i) n
logn ≤ a ≤ n,

(ii) d2 | a implies d ≤ log n, and

(i)ii a cannot be written in the form a = uvw with integers u, v, w such that
3√n

(logn)16
≤ u, v, w ≤

3
√
n(log n)16.

Here, we omit the details.

3.4

The proof of Theorem 7 is a modification of the similar bounds for multiplicative 3-Sidon sets, that is,
for sets avoiding solutions to the equation a1a2a3 = b1b2b3. (Note that the main term for multiplicative
3-Sidon sets is larger, π(n) + π(n/2), so neither bound is a corollary, instead the methods should be
adapted to this slightly different setting.)
The set achieving the asymptotically largest possible size for Theorem 8 is

A =

{
m : m = pq,

n

log n
< m ≤ n, p, q primes, p <

q

log n

}
.

The upper bound is a consequence of [2, Theorem 3], since, according to this result, if n is large enough,
there exist distinct a1, a2, . . . , a6 ∈ A such that

a1a2 = a3a4 = a5a6,

however, then a1a2a3a4a5a6 is a perfect cube.

4 Concluding remarks and open problems

We gave bounds for the functions Fk,3(n) and fk,3(n).
Finally, we pose some problems for further research.

Problem 1. Let us suppose that 1 < k < d. Is it true that

nk/d ≪ n− Fk,d(n) ≤ n− fk,d(n) ≪ nk/d?

Problem 2. Is it true that there exists a constant c such that

f2,3(n) = n− (c+ o(1))n2/3?
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Problem 3. Let d ≥ 4. Is it true that

fd+1,d(n) = (1− o(1))n?

As a corollary of the above theorems we get the following result:

Corollary 9. For d = 2, 3 and k > d, d | k, there exist constants ck,d > 0 and Ck,d ∈ Z+ such that

Fk,d(n) = (ck,d + o(1))πCk,d
(n),

where πr(n) denotes the number of positive integers up to n which have exactly r prime factors (counted
with multiplicity)

Problem 4. Is it true that for any d ≥ 4 and k > d, d | k, there exist constants ck,d > 0 and Ck,d ∈ Z+

such that
Fk,d(n) = (ck,d + o(1))πCk,d

(n)?
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