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Josep Dı́az∗1, Öznur Yaşar Diner†2, Maria Serna‡1, and Oriol Serra§1
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Abstract

An edge-colored multigraph G is rainbow connected if every pair of vertices is joined by at least
one rainbow path, i.e., a path where no two edges are of the same color. In the context of multilayered
networks, we introduce the notion of multilayered random geometric graphs, from h ≥ 2 independent
random geometric graphs G(n, r) on the unit square. We define an edge-coloring by coloring the
edges according to the copy of G(n, r) they belong to and study the rainbow connectivity of the

resulting edge-colored multigraph. We show that r(n) =
(

lnn
nh−1

)1/2h
, is a threshold of the radius for

the property of being rainbow connected. This complements the known analogous results for the
multilayered graphs defined on the Erdős–Rényi random model.

1 Introduction

Complex networks are used to simulate large-scale real-world systems, which may consist of various
interconnected sub-networks or topologies. For instance, this could involve different transportation
systems and coordinating schedules between them, modeling interactions across different topologies of
the network. Barrat et al. [1] proposed a new network model to represent the emerging large network
systems, which include coexisting interacting different topologies. Those network models are known as
layered complex networks, multiplex networks or as multilayered networks. In a multilayered network,
each type of interaction of the agents gets its own layer, like a social network having a different layer
for each relationship, such as friendship or professional connections [6]. Recently, there’s been a lot
of interest in adapting tools used in the analysis for single-layer networks to the study of multilayered
ones, both in deterministic and random models [2]. In the present work, we explore thresholds for the
rainbow connectivity of the multilayered random geometric graphs.
A random geometric graph (RGG), G(n, r), where r = r(n) on the unit square I = [0, 1]2 is defined

as follows: Given n vertices and a radii r(n) ∈ [0,
√
2], n vertices are sprinkled independently and

uniformly at random (u.a.r.) in the unit square I = [0, 1]2. Two vertices are adjacent if and only if
their Euclidean distance is less than or equal to r(n).

Random geometric graphs provide a natural framework for the design and analysis of wireless net-
works. For further information on random geometric graphs, one may refer to Penrose [10] or to the
more recent survey by Walters [12]. Random geometric graphs exhibit a sharp threshold behavior with
respect to connectivity [7]: As the value of r increases, there is a critical threshold value rc such that
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when r < rc, the graph is typically disconnected, while for r > rc, the graph is typically connected. The

threshold for connectivity of G(n, r) is rc ∼
√

lnn
πn . Notice rc is also a threshold for the disappearance

of isolated vertices in G(n, r).

For any random geometric graph, G(n, r), the expected degree |NG(n,r)(v)| is w.h.p.1 nπr2,∀v ∈
V (G). Equivalently the expected degree is concentrated around its mean. Regarding the diameter,
diam(G), of a random geometric graph G(n, r), Dı́az et al. [5] showed that if r = Ω(rc) then diam(G) =

(1 + o(1))
√
2
r .

We now introduce a general definition for the random model of edge colored multigraphs obtained
by the superposition of a collection of random geometric graphs on the same set of vertices. Formally,
a multilayered geometric graph G(n, r, h, b) is defined by three parameters, n the number of nodes, r
the radii of connectivity, and h the number of layers, together with a position assignment b : [n] →
[0, 1]2 × · · · × [0, 1]2︸ ︷︷ ︸

h

. For i ∈ [n], we denote b(i) = (bi1, . . . , b
i
h), where bik ∈ [0, 1]2. The multigraph

G(n, r, h, b) has vertex set [n] and an edge (i, j) with color k, 1 ≤ k ≤ h, if the Euclidean distance
between bik and bjk is at most r. Note that, for k ∈ [h], r and the positions (bik)n, a geometric graph
Gk(n, r) is defined by the edges with color k. Thus, G(n, r, h, b) can be seen as the colored union of h
geometric graphs, all with the same vertex set and radius. Observe that G(n, r, h, b) is defined on I2h.
We refer to Gk(n, r) as the k-th layer of G(n, r, h, b).

A multilayered random geometric graph G(n, r, h) is obtained when the position assignment b of the
vertices is selected independently, for each vertex and layer, uniformly at random in [0, 1]2. Thus, the
k-th layer is an RGG. This definition is given for dimension two and it can be extended to points in a
multidimensional space by redefining the scope of the position function.

Given an edge–colored graph G, we say G is rainbow connected if, between any pair of vertices
u, v ∈ V (G), there is a path with edges of pairwise distinct colors. Chartrand et al [4] introduced the
study of the rainbow connectivity of graphs as a strong property to secure strong connectivity in graphs
and networks. Since then, variants of rainbow connectivity have been applied to different deterministic
models of graphs, see for ex. the survey of Li et al. [8] for further details on the extension of rainbow
connectivity to other graph models.

The study of rainbow connectivity has been addressed in the context of multilayered binomial random
graphs by Bradshaw and Mohar [3]. The authors give sharp concentration results on three values on
the number h of layers needed to ensure rainbow connectivity of the resulting multilayered binomial
random graph G(n, p) with appropriate values of p. The results have been extended by Shang [11] to
ensure rainbow connectivity k in the same model, namely, the existence of k internally disjoint rainbow
paths joining every pair of vertices in the multilayered graph.

In this paper, we are interested in studying the rainbow connectivity of a multilayered random
geometric graph G(n, r, h). In particular, for every fixed h, we are interested in the minimum value of
r (as a function of n) such that w.h.p. the multilayered random geometric graph G(n, r, h) is rainbow
connected. Dually, for fixed values of r we want to determine the minimum number of layers h such
that G(n, r, h) is rainbow connected. The latter parameter can be defined as the rainbow connectivity
of the multilayered random geometric graph.

Main results: Our main results are lower and upper bounds of the value of r, to asymptotically
assure that w.h.p. G(n, r, h), do have or do not have the property of being rainbow connected.

Theorem 1. Let h ≥ 2 be an integer and let G = G(n, h, r) be an h–layered random geometric graph.
Then, if

r(n) ≥
(

lnn

nh−1

)1/2h

,

1 w.h.p. means with high probability, i.e. with probability tending to 1 as n → ∞.
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then w.h.p. G is rainbow connected.
Moreover, there is a constant 0 < c ≤ 1 such that, if

r(n) < c

(
lnn

nh−1

)1/2h

,

then w.h.p. G is not rainbow connected.

Notice that Theorem 1 can be re-stated as a threshold of h for the rainbow connectivity of multilay-
ered geometric random graph G.

Corollary 2. Let r = r(n) with r(n) = o(1). Set

h0 =

⌈
log n+ log log n

log nr2

⌉
.

The multilayered random geometric graph G(n, r, h) is w.h.p. rainbow connected if h ≤ h0, while if
h > h0 it is w.h.p. not rainbow connected.

2 Rainbow Connectivity of Two-layered Random Geometric Graphs

The proof of Theorem 1 requires a special argument for the case h = 2. We give below the proof of
this case which also illustrates the techniques for general h > 2.

Proposition 3. Let G(n, r, 2) be a two–layered random geometric graph. If

r(n) ≥
(
lnn

n

)1/4

,

then G is w.h.p. rainbow connected.
Moreover, there is a positive constant c > 0 such that, if

r(n) ≤ c

(
lnn

n

)1/4

,

then w.h.p. G is not rainbow connected.

Proof. Denote by G1(n, r) and G2(n, r) the two layers of G, with the value of r = r(n) given in the
statement of the proposition. For each pair vi, vj ∈ V , let Xvi,vj denote the indicator random variable

Xvi,vj =

{
1 if there is not a rainbow path between vi and vj in G ,

0 otherwise .

Let vk be different from vi and vj . Let Avk be the event that vk is joined to vi in G1(n, r) and to vj
in G2(n, r) or vice versa, namely,

Avk = {{vi ∈ B1(vk)} ∩ {vj ∈ B2(vk)}} ∪ {{vj ∈ B1(vk)} ∩ {vi ∈ B2(vk)}} ,

where Bi(v) denotes the set of neighbours of v in Gi, i = 1, 2. By taking into account the boundary
effects on the unit square, we have Pr(vi ∈ B(vj)) = πr2 + o(r2). We have,

(πr2 + o(r2))2 ≤ Pr(Avk) ≤ 2(πr2 + o(r2))2 .

Let Avivj denote the event that vi and vj are joined by an edge either in G1(n, r) or in G2(n, r), that is

Avi,vj = {vi ∈ B1(vj)} ∪ {vi ∈ B2(vj)},
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so that

Pr(Avi,vj ) = 2πr2 + o(r2).

For given vi and vj , the event that they are joined by a rainbow path in G is (∪k ̸=i,jAvk) ∪ Avi,vj .
Therefore, since Avk and Avi,vj are independent, for every sufficient large n we have

E(Xvi,vj ) = Pr((∪k ̸=i,jAvk) ∪ (Avi,vj )) = Pr((∩k ̸=i,jAvk) ∩ (Avi,vj )

≤ (1− (πr2)2 + o(r2))n−2 · (1− 2πr2 + o(r2))

≤ (1− (πr2)2 + o(r2))n .

Let X be a random variable counting the number of pairs {vi, vj} that are not joined by a rainbow
path in G. Then X =

∑
i<j Xvi,vj and, by plugging in the inequality for r(n),

E(X) =
∑
i<j

E(Xvi,vj ) ≤
(
n

2

)
(1− (πr2)2 + o(r2))n

≤ e2 logn
(
1− π2 log n

n
+ o

(
log n

n

))n

≤ e(2−π2) logn+o(logn)

By Markov’s inequality, it follows that Pr(X ≥ 1) ≤ E(X) → 0, as n → ∞. It follows that w.h.p.
G is rainbow connected, which proves the first part of the statement.

For the second part, let r(n) ≤ c(log n/n)1/4 for some positive small constant c to be specified later.
By using the upper bounds on the probabilities of the events Avk and Avi,vj ,

E(Xvi,vj ) ≥ (1− 2(πr2 + o(r2))2)n−2(1− 2πr2 + o(r2)) ≥
(
1− 2c4π2 lnn

n

)n−1

.

E(Xvi,vj ) ≥ (1− 2(πr2 + o(r2))2)n−2 ≥
(
1− 2c4π2 lnn

n
+ o

(
log n

n

))n−2

Let Xvi =
∑

j ̸=iXvi,vj denote the number of vertices vj not joined with vi by a rainbow path in G. We

have, with c′ = 2c4π2,

E(Xvi) ≥ (n− 2)

(
1− c′

ln(n− 1)

n− 1
+ o

(
log n

n

))n−2

∼ e(1−c′) lnn = n1−c′ .

By choosing c < (2/π2)1/4 we have c′ < 1, so that E(Xi) → ∞ with n → ∞. Since Xvi is a sum

of independent random variables, by Chernoff inequality we have Pr(Xvi = 0) ≤ e−n1−c′′/2 for each
1 > c′′ > c′. It follows that G is w.h.p. not rainbow connected.

3 Proof of Theorem 1

The proof of Theorem 1, for h > 2, is sketched below.

A key property of multilayered random geometric graphs is their local expanding properties.

Lemma 4. Let h > 2 be fixed and let G = G(n, r, h) be a multilayered random geometric graph. Let
u ∈ V (G) a fixed vertex and denote by Nj(u) the set of vertices reached from u by rainbow paths of
length j starting at u, the i–th edge along the path colored i. Let M = nr2. Then, for 1 ≤ j ≤ h − 1
we have that w.h.p.

|Nj(u)| = Θ(M j).
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The proof of Lemma 4 uses the fact that the probability that the size of the image of a random map
g : [m] → [k] deviates from m more than a constant a > 0 is at most 2 exp(−2(a−m2/2k)2/m). This
fact in turn follows by a direct application of the McDiarmid concentration inequalities [9].
Lemma 4 provides the existence of rainbow paths from a given vertex to all vertices in the graph.

Proposition 5. Let h > 2 be fixed and let G = G(n, h, r) be an h–multilayered random geometric
graph. Let u ∈ V (G). If

r ≥
(

lnn

nh−1

)1/2h

,

then w.h.p. there is a rainbow path from u to every other vertex in G.

Proof. Let us consider first the case that h ≥ 3 is odd, i.e., h = 2k + 1, for some k > 1. Denote by
Gi = Gi(n, r) the i-thlayer of G. For I ⊆ [h], we denote by GI(n, r) the layered graph formed by the
layers included in I. For a pair i, j of distinct vertices in V (G) and a permutation σ of {1, 2, 3, . . . , h},
let P (i, j;σ) denote the set of rainbow paths of length h joining i and j with the first edge in Gσ(1)

and the last one in Gσ(h). For a permutation σ, let I1(σ) = {σ(1), . . . , σ(k)}
Let A = Nk,σ(i) be the set of vertices reached from i by rainbow paths of length k starting at j

following the color order determined by σ. Let B = Nk,σ(j) be the set of vertices reached from j by
rainbow paths of length k starting at j following the color order determined by following σ in reversed
order with the k-th edge along the path colored k+2. From Lemma 4, |A|, |B| = Θ((nr2)k) = Θ(nkr2k)
Let Xi,j denote the number of rainbow paths of length h joining i and j with the first edge in Gσ(1),

the second edge in Gσ(2) and so on. For a pair (k, k′) ∈ A × B with k ̸= k′, let Yk,k′ be the indicator
function that k and k′ are neighbours in Gσ(k+1). We have E(Yk,k′) = πr2, the probability that the
vertices k′ and k are adjacent in Gσ(k+1). Then,

Xij =
∑
k,k′

Yk,k′ ,

where the sum runs through all pairs (k, k′) ∈ A×B with k ̸= k′. We observe that the variables Yk,k′

are independent. When the pairs (k, k′), (l, l′) are disjoint it is clear that Yk,k′ , Yl,l′ are independent.
When k = l, say, then Pr(Yk,k′ = 1, Yk,l′ = 1) is the probability that k′ and l′ are both adjacent to k,
which is the product Pr(Yk,k′ = 1)Pr(Yk,l′ = 1).

Let us fix r(n) ≥
(

lnn
nh−1

)1/2h
. Note that Nh−1(u) ≪ n, so each (h − 1)–layered subgrah of G is not

w.h.p. rainbow connected. Then it follows that w.h.p. the sets A and B, for i ̸= j not connected by
a rainbow path of length h− 1 are disjoint. In this case, the events Yk,k′ are independent, therefore

Pr(Xi,j = 0) = Pr(∩k,k′{Yk,k′ = 0}) =
∏
k,k′

Pr(Yk,k′ = 0)

= (1− πr2)(n
kr2k)2 ≤ e−πn2kr4k+2

.

By using the union bound on all pairs i, j and the lower bound on r,

Pr(∩i,j{Xij ≥ 1}) = 1− Pr(∪i,jXi,j = 0) ≥ 1− n2eπn
2kr4k+2

,

As k = (h− 1)/2, by the lower bound on r,

n2kr4k+2 = nh−1r2h ≥ (log n),

Therefore, the last term in the bound on Pr(∩i,j{Xij ≥ 1}) is o(1) as n → ∞. Hence w.h.p. all pairs
i, j are connected by a rainbow path of length h.
For even h, the result is obtained by an extension of the argument used for h = 2 in Proposition 3.

For the lower bound on r(n), an application of the second moment method as the one given in
Proposition 3 for the case h = 2 can be extended to h > 2.
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4 Conclusions

The main purpose of this paper is to identify the threshold for the radius to get a rainbow-connected
multilayered random geometric graph, as obtained in Theorem 1. As mentioned in the Introduction,
the analogous problem of determining the threshold for h so that the multilayered binomial random
graph is rainbow connected was addressed by Bradshaw and Mohar [3].
We believe that the model of multilayered random geometric graphs is very appealing and leads to a

host of interesting problems. One may think of a dynamic setting where n individuals perform random
walks within the cube and communicate with the close neighbors at discrete times t1 < t2 < · · · < th.
The rainbow connectivity in this setting measures the number of instants needed so that every individual
can communicate with each of the other ones. A natural immediate extension is to address the threshold
to get rainbow connectivity k, as achieved in the case of multilayered binomial random graphs by
Shang [11].
There is a vast literature addressing rainbow problems in random graph models, and this paper is

meant to open the path to these problems in the context of multilayered random geometric graphs.
It would also be interesting to find asymptotic estimates on r such that h copies produce a rainbow
clique of size

√
h.

We observe that, for large h, the threshold of r for rainbow connectivity approaches the connectivity
threshold of random geometric graphs. The arguments in the proof, however, apply only for constant
h. For h growing with n, the correlation between distinct edges in our model decreases and the model
gets closer to the random binomial graph, where the results are expected to behave differently and the
geometric aspects of the model become irrelevant.
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