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Abstract

We study a generalization of a famous result of Goodman and establish that asymptotically at
least a 1/256 fraction of all triangles needs to be monochromatic in any four-coloring of the edges
of a complete graph. We also show that any large enough extremal construction must be based on
a blow-up of one of the two R(3, 3, 3) Ramsey-colorings of K16. This result is obtained through an
efficient flag algebra formulation by exploiting problem-specific combinatorial symmetries that also
allows us to study some related problems.

1 Introduction

In 1959, Goodman [17] established precisely how few monochromatic triangles any two-edge-coloring of
the complete graph on n vertices can contain, implying that asymptotically at least 1/4 of all triangles
need to be monochromatic as n tends to infinity. Subsequently, in [18], he also asked for an answer
to the natural generalization of this problem to more than two colors.1 It took over 50 years and the
advent of flag algebras for even the case of three colors to be settled: Cummings et al. [7] showed that
asymptotically at least a 1/25 fraction of all triangles need to be monochromatic in any three-edge-
coloring of Kn. For n large enough they also precisely characterize the set of extremal constructions,
showing that the problem is closely linked to the Ramsey Number R(3, 3) = 6 as previously noted by
Fox [12, Theorem 5.2]. The purpose of this paper is to study the next iteration of this problem, in
particular establishing an answer in the affirmative to Question 4 in [7] for the case of four colors.

Theorem 1. Asymptotically at least a 1/256 fraction of all triangles are monochromatic in any four-
edge-coloring of Kn and any sufficiently large extremal coloring must be based on one of the two R(3, 3, 3)
Ramsey-colorings of K16.

The proof of this result relies on the flag algebra framework of Razborov [32, 6]. This allows one
to apply a formalized double counting and Cauchy-Schwarz-type argument to obtain bounds for clas-
sic problems in Turán and Ramsey theory by solving a concrete semidefinite programming (SDP)
formulation. Broadly speaking, the larger this formulation, the better the derived bound becomes.
The major hurdle in establishing Theorem 1 therefore consisted of deriving an efficient formulation

by identifying and exploiting combinatorial symmetries through a parameter-dependent notion of au-
tomorphisms. The resulting proof likely constitutes the largest exact flag algebra calculation done to
date. The methods developed to derive it strengthen the previous approach of modifying the underly-
ing notion of isomorphism and generalize Razborov’s invariant-anti-invariant decomposition [33]. They
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1He in fact calls the three-color version of this question “an old and difficult problem” and raises the question of more
than three colors in Section 6 of [18]. The precise origin of this problem is unclear.
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are applicable whenever the object we are minimizing has previously ignored symmetries and we hope
that they will therefore find further applications. Accompanying these computational improvements,
we also give an extension of the stability argument previously developed for the three-color case in [7].
We generalize it to the case of an arbitrary number of colors and establish a strong link between the
problem of determining the Ramsey number and the Ramsey multiplicity problem.

2 The Ramsey Multiplicity Problem

We are studying the family of c-colorings of the edges between a finite number of vertices, that is maps
G :

{
{u, v} | u, v ∈ V, u ̸= v

}
→ [c] = {1, . . . , c} where V is any finite set, but we will use common graph

notation throughout. Let G(c) denote the set of all such colorings and G(c)
n the set of all colorings of order

n. Given colorings H ∈ G(c)
k and G ∈ G(c)

n , we write p(H;G) = |{S ⊆ V (G) | G[S] ≃ H}|/
(
n
k

)
for the

density of H in G. Note that p(H;G) = 0 if n < k. Denoting the monochromatic coloring of the edges
between vertices in [t] with color i ∈ [c] by Ki

t , a multi-color version of Ramsey’s theorem states that

for any t1, . . . , tc ∈ N the number R(t1, . . . , tc) = min
({

n ∈ N | {G ∈ G(c)
n | p(K1

t ;G)+ . . .+p(Kc
t ;G) =

0} = ∅
})

is in fact finite. For the diagonal case, where t1 = . . . = tc, we write Rc(t) = R(t, . . . , t). The
study of the parameter

mc(t;n) = min
G∈G(c)

n

p(K1
t ;G) + . . .+ p(Kc

t ;G)

is known as the Ramsey multiplicity problem for cliques. A simple double-counting argument establishes
that mc(t;n) is monotonically increasing, so that the limit mc(t) = limn→∞mc(t;n) is well defined and
satisfies mc(t) ≥ mc(t;n) for any n ∈ N. Note that mc(t;n) > 0 as long as n ≥ Rc(t) and therefore
mc(t) > 0 by Ramsey’s theorem.

Concerning upper bounds for mc(t), coloring the edges uniformly at random with the c colors estab-
lishes that

mc(t) ≤ c1−(
t
2). (1)

Another way to obtain an upper bound is by blowing up a coloring of the edges of a looped complete
graph, that is a map C :

{
{u, v} | u, v ∈ V

}
→ [c]. We use the same notation concerning the vertex

and edge set as we did for unlooped colorings and write L(c) for the set of all such colorings as well

as L(c)
n for colorings of order n. A coloring H ∈ G(c) embeds into a given C ∈ L(c)

k , if there exists
a (not necessarily injective) map φ : V (H) → V (C) satisfying H({u, v}) = C({φ(u), φ(v)}) for all
u, v ∈ V (H). We now let B(C) = {H ∈ G(c) | H embeds into C} denote the family of blow-up colorings
of C. Note that B(C) contains graphs of arbitrarily large order. Letting

p̂(H;C) = |{φ embeds H into C}| / v(C)v(H)

denote the embedding density, we have the following result

Lemma 2. Given any C ∈ L(c)
k , we have mc(t) ≤ p̂(K1

t ;C) + . . .+ p̂(Kc
t ;C).

In our case, the most relevant candidates for colorings C are obtained by considering a Ramsey-
coloring on r = Rc−1(t) − 1 vertices avoiding cliques of size t in any of the c − 1 colors. Coloring the
loops with the additional c-th, this implies an upper bound of

mc(t) ≤ (Rc−1(t)− 1)1−t, (2)

see also Theorem 5.2 in [12]. The result of Goodman [17] implies that m2(3) = 1/4. This aligns both
with the probabilistic upper bound stated in Equation (1) as well as the Ramsey upper bound stated
in Equation (2), where for the latter we are relying on the trivial case of Ramsey’s theorem, that is
R1(t) = R(t) = t.
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Given that the former bound dominates when t grows as long as c = 2, Erdős suggested [10] that the
probabilistic upper bound should always be tight in this case. This was disproven by Thomason [39]
for any t ≥ 4 and a significant number of results since then have tried to either determine improved
asymptotics for m2(t) or specific values of it for small t [5, 9, 11, 14, 15, 16, 20, 22, 27, 35, 38, 40, 41, 29].
The problem also links to Sidorenko’s famous open conjecture and the search for a characterization
of common graphs, cf. [4, 36]. As of now, even m2(4) remains open, with the best current lower and
upper bounds of 0.0296 ≤ m2(4) ≤ 0.03014 respectively due to Grzesik et al. [20] as well as Parczyk et
al. [29]. Note that we also obtained a slight improvement of m2(4) ≥ 0.02961.
For the asymptotic values, there has likewise been scarce progress, with the current best lower bound

of C−t2(1+o(1)) ≤ m2(t) for C ≈ 2.18 due to Conlon [5] and the best upper bound ofm2(t) ≤ 0.835·21−(
t
2)

for t ≥ 7 due to Jagger, Št́ov́ıček, and Thomason [22]. Given the lack of progress on the two-color,
diagonal version, there are two obvious directions to explore: the case of more colors, where c > 2, as
well as the off-diagonal case, where t1 ̸= t2.

3 Increasing the number of colors

Studying monochromatic triangles for more than two colors was, as already mentioned in the intro-
duction, suggested by Goodman [18] and resolved for c = 3 by Cummings et al. [7], whose result aligns
with Equation (2) since R2(3) = 6. In order to state their result in its fullest strength, let CR(3,3)

denote the coloring in L(3)
5 obtained by taking the unique Ramsey 2-coloring of a complete graph on

five vertices that avoids monochromatic triangles and coloring the loops with the third color, that is

E1(CR(3,3)) and E2(CR(3,3)) both are 5-cycles and E3(CR(3,3)) contains all five loops. Let G(3)
ex ⊂ G(3)

now consist of all colorings that can be obtained by (i) selecting an element in B(CR(3,3)), (ii) recoloring
some of the edges from the first or second color to instead use the third color without creating any
additional monochromatic triangles, and (iii) applying any permutation of the colors. Note that the
second step implies that the recolored edges must form a matching between any of the five ‘parts’,
though not every such recoloring avoids additional triangles.

Theorem 3 (Cummings et al. [7]). There exists an n0 ∈ N such that any element in G(3)
n of order

n ≥ n0 minimizing the number of monochromatic triangles must be in G(3)
ex .

The result characterizes extremal constructions for large enough n, though more recently there
has been increasing interest in deriving stability results based on flag algebra calculations [30]. Let

C ′
R(3,3,3) and C ′′

R(3,3,3) denote the two colorings in L(4)
16 obtained in a similar way to the previously

defined CR(3,3) by respectively taking the two Ramsey 3-coloring of a complete graph on 16 vertices
that avoid monochromatic triangles [19, 23, 24, 31] and coloring the vertices with the fourth color.

Mirroring the construction of G(3)
ex , we let G(4)

ex ⊂ G(4) consist of all colorings that can be obtained by

(i) selecting an element in B(C ′
R(3,3,3)) or B(C

′′
R(3,3,3)),

(ii) recoloring some of the edges from any of the first, second or third color to instead use the fourth
color without creating any additional monochromatic triangles,

(iii) applying any permutation of the four colors.

Theorem 4. There exists an n0 ∈ N such that for any ε > 0 there exists δ > 0 such that any G ∈ G(4)
n

of order n ≥ n0 with
∑c

i=1 p(K
i
3;G) ≤ m4(3;n) + δ can be turned into an element of G(4)

ex by recoloring
at most ε

(
n
2

)
edges.

Note that this implies that any large enough element in G(4)
n minimizing the number of monochromatic

triangles must be in G(4)
ex . Our results in fact show that it likewise can be obtained for the case of three

colors.
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4 The off-diagonal case

The second of the previously suggested directions, that is considering the off-diagonal case, has recently
started to receive some attention [29, 3, 26, 21] with two competing notions of off-diagonal Ramsey
multiplicity having been suggested. The first is due to Parczyk et al. [29] and is concerned with
determining

m(t1, . . . , tc;n) = min
G∈G(c)

n

p(K1
t1 ;G) + . . .+ p(Kc

tc ;G).

This generalizes the previously defined mc(t;n) but does not consider the inherent imbalance when for
example c = 2 and t1 ≪ t2; minimizing p(K1

t1 ;G)+p(K2
t2 ;G) in this case will be equivalent to enforcing

p(K1
t1 ;G) = 0 and minimizing p(K2

t2 ;G), a related problem previously suggested by Erdős [10, 28, 8, 29].
This issue was already noted in [29] and subsequently addressed by Moss and Noel [26], who instead
suggested determining

ms(t1, . . . , tc;n) = min
G∈G(c)

n

max
λ1,...,λc≥0

λ1+...+λc=1

λ1 p(K
1
t1 ;G) + . . .+ λc p(K

c
tc ;G).

We will use m(t1, . . . , tc) as well as ms(t1, . . . , tc) to respectively denote the limits of both of these
functions as n tends to infinity. Both notions generalize the previous diagonal definition and clearly
ms(t1, . . . , tc) ≥ m(t1, . . . , tc). Unsurprisingly, determining ms(t1, . . . , tc) has proven much more diffi-
cult, with m(3, 4) and m(3, 5) having been settled in [29] and ms(3, 4) still remaining open. Here we
derive the following result for the weaker of the two notions.

Proposition 5. We have m(3, 3, 4) = 1/125.

The upper bound follows immediately by generalizing Equation (2) to the off-diagonal case, that is
by noting that

m(t1, . . . , tc) ≤ (R(t1, . . . , tc−1)− 1)1−tc (3)

and inserting R(3, 3) = 6. The lower bound was derived using the same improvements to the flag
algebra calculus that we developed to derive our main result.

5 Discussion and Outlook

The proposed computational improvements were crucial in order to derive a certificate for the upper
bound and stability statement in Theorem 4. They are applicable whenever the problem studied ex-
hibits symmetries with respects to the colors, with the reduction of the number of constraints essentially
factorial in the number of colors. We therefore hope that they find further use for other problems, for
example for improved upper bounds on Ramsey numbers through flag algebras, as recently done by
Lidicky and Pfender [25]. The improvements however are largely not applicable when there are no
previously ignored symmetries in the problem statement, as is for example the case with the famous
(3, 4)-Turán conjecture. They may also not be helpful for applications beyond graphs [1, 2, 37, 34],
where there can be more drastic jumps on the numbers of constraints as N is increased.
Besides these computational improvements, it is notable that our generalization of the stability

argument from [7] no longer requires explicit knowledge of the Ramsey colorings underlying the extremal
construction. While in our case the colorings were both known and crucial in order to derive an exact
rather than a floating point-based flag algebra certificate, our main stability result draws a connection
between the Ramsey number Rc−1(3) and the Ramsey multiplicity problem mc(3), in theory opens up
an avenue to establish a sort of equivalence of the two problems without first explicitly solving both or
even either problem:

1) We could derive a flag algebra certificate for a particular c > 4 establishing mc(3) and meeting
the necessary requirements without explicit knowledge of the Rc−1(3)-Ramsey colorings. Note
that this would imply the exact value of Rc−1(3) = mc(3)

−1/2 − 1.
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2) We could show that the Ramsey multiplicity problem satisfies the necessary requirements for
arbitrary c ≥ 3, in particular that K̂3,1 and K̂3,3 have zero density in an extremal construction,
through a purely theoretical argument not relying on the semidefinite programming method and
without explicitly determining mc(3). This would imply that mc(3) = (Rc−1(3) − 1)−2 without
giving us explicit knowledge of either value.

It should be noted that Fox and Wigerson [13] somewhat recently characterized an infinite family
of 2-colorings for which an upper bound equivalent to the one given by Equation (2) is tight, i.e.,
Turán graphs determine the extremal constructions for the respective Ramsey multiplicity problem.
They also obtained results for the case of c = 3 colors that are conditioned the conjecturec bound
R(t, ⌈t/2⌉) ≤ 2−31R(t, t). At the risk of extrapolating from a sample size of two, this fact motivates us
to go so far as to conjecture the following to be true.

Conjecture 6. For any c ≥ 3, we have mc(3) = (Rc−1(3)− 1)−2 and the only extremal constructions
are derived from Rc−1(3)-Ramsey colorings.
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[2] Balogh, J., Hu, P., Lidickỳ, B., Liu, H.: Upper bounds on the size of 4-and 6-cycle-free subgraphs of the hypercube.
European Journal of Combinatorics 35, 75–85 (2014)

[3] Behague, N., Morrison, N., Noel, J.A.: Common pairs of graphs. arXiv preprint arXiv:2208.02045 (2022)

[4] Burr, S.A., Rosta, V.: On the Ramsey multiplicities of graphs—problems and recent results. Journal of Graph Theory
4(4), 347–361 (1980)

[5] Conlon, D.: On the Ramsey multiplicity of complete graphs. Combinatorica 32(2), 171–186 (2012).
https://doi.org/10.1007/s00493-012-2465-x, https://doi.org/10.1007/s00493-012-2465-x

[6] Coregliano, L.N., Razborov, A.A.: Semantic limits of dense combinatorial objects. Russian Mathematical Surveys
75(4), 627 (2020)

[7] Cummings, J., Král’, D., Pfender, F., Sperfeld, K., Treglown, A., Young, M.: Monochromatic triangles in three-
coloured graphs. Journal of Combinatorial Theory, Series B 103(4), 489–503 (2013)

[8] Das, S., Huang, H., Ma, J., Naves, H., Sudakov, B.: A problem of erdős on the minimum number of k-cliques.
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[15] Franek, F., Rödl, V.: 2-colorings of complete graphs with a small number of monochromatic K4 subgraphs. Discrete
mathematics 114(1-3), 199–203 (1993)

[16] Giraud, G.: Sur le probleme de Goodman pour les quadrangles et la majoration des nombres de Ramsey. Journal of
Combinatorial Theory, Series B 27(3), 237–253 (1979)

[17] Goodman, A.W.: On sets of acquaintances and strangers at any party. The American Mathematical Monthly 66(9),
778–783 (1959)

[18] Goodman, A.: Triangles in a complete chromatic graph with three colors. Discrete mathematics 57(3), 225–235
(1985)

[19] Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Canadian Journal of Mathematics
7, 1–7 (1955)

https://doi.org/10.1007/s00493-012-2465-x


Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024
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