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Abstract

In the change-making problem the goal is to represent a certain amount of money with the least
possible number of coins, chosen from a given set of denominations. The greedy algorithm picks the
coin of largest possible denomination first. This strategy does not always produce the least number
of coins, except when the set of denominations is endowed with certain properties, in which case it
is called a greedy set. If the set of denominations is an infinite sequence, we call it totally greedy
if every prefix subset is greedy. This paper investigates some totally greedy sequences generated
by second-order linear recurrences with constant coefficients. In particular it investigates sufficient
conditions for the sequence to be totally greedy.

1 Greedy sets and totally greedy sequences

In the change-making problem we are given a set of coin denominations S = {s1 = 1, s2, . . . , st},
with s1 < . . . < st, and a target amount k ∈ N0 (where N0 denotes the set of nonnegative integers).
The goal is to represent k using as few coins as possible from the given denominations. Mathemat-
ically, we are looking for a payment vector (a1, . . . , at), such that: 1. ai ∈ N0 for all i = 1, . . . , t,
2.

∑t
i=1 aisi = k, and 3.

∑t
i=1 ai is minimal.

This problem has been extensively studied in recent years (see for instance [1, 2, 3, 11]), and it is
related to other problems involving integers, such as the Frobenius problem and the postage stamp
problem [10]. It is also a special case of the well known knapsack problem [5]. Regarding its computa-
tional complexity, finding the optimal payment vector for a given k is NP-hard if the coins are large
and represented in binary (or decimal) [4].
A simple approach for dealing with the problem is the greedy algorithm, which proceeds by first

choosing the coin of the largest possible denomination, then the second largest, and so on. This idea
is formalized in Algorithm 1:

Algorithm 1: GREEDY PAYMENT METHOD

Input : The set of denominations S = 1, s2, . . . , st, with 1 < s2 < . . . < st, and a quantity
k ≥ 0.

Output: Payment vector (a1, a2, . . . , at).

1 for i:= t downto 1 do
2 ai := k div si;
3 k := k mod si;

4 end
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Definition 1. For a given set of denominations S = 1, s2, . . . , st, the greedy payment vector is the
payment vector (a1, a2, . . . , at) produced by Algorithm 1, and GreedyCostS(k) =

∑t
i=1 ai.

It is easy to verify that the greedy payment vector is not necessarily optimal (i.e. GreedyCostS(k)
is not always minimal among all possible payment vectors) but there do exist some specific sets of
denominations S for which the greedy payment vector is always optimal:

Definition 2. If a set S of denominations always produces an optimal payment vector for any given
amount k, then S is called orderly, canonical, or greedy.

Greedy sets can be used, for instance, to construct circulant networks with efficient routing algorithms
[8]. There is a polynomial-time algorithm that determines whether a given set of denominations is
greedy [7, 10], as well as necessary and/or sufficient conditions for special families of denomination sets
[1, 2, 3, 11]. The current paper continues along that path.

Note that a set S consisting of one or two denominations is always greedy. For sets of cardinal 3 we
have the following [1]:

Proposition 3. The set S = {1, a, b} (with a < b) is greedy if, and only if, b− a belongs to the set

D(a) = {a− 1, a} ∪ {2a− 2, 2a− 1, 2a} ∪ . . . {ma−m, . . .ma} ∪ . . . =

∞⋃
m=1

m⋃
s=0

{ma− s}

□

The one-point theorem provides a powerful necessary and sufficient condition (Theorem 2.1 [1]):

Theorem 4. Suppose that S = {1, s2, . . . , st} is a greedy set of denominations, and st+1 > st. Now let

m =

⌈
st+1

st

⌉
. Then Ŝ = {1, s2, . . . , st, st+1} is greedy if, and only if, GreedyCostS(mst − st+1) < m.

□

Notice that

(m− 1)st + 1 ≤ st+1 ≤ mst,

by the definition of m. A straightforward consequence of the one-point theorem is the following

Corollary 5. [Lemma 7.4 of [1]] Suppose that S = {1, s2, . . . , st} is a greedy set, and st+1 = ust, for
some u ∈ N. Then Ŝ = {1, s2, . . . , st, st+1} is also greedy. □

Definition 6. A set S = {1, s2, . . . , st} is totally greedy1 if every prefix subset {1, s2, . . . , sk}, with
k ≤ t is greedy.

Obviously, a totally greedy set is also greedy, but the converse is not true in general. Take, for
instance, the greedy set {1, 2, 5, 6, 10}, whose prefix subset {1, 2, 5, 6} is not greedy.

Definition 6 can be extended to infinite sequences in a straightforward way:

Definition 7. Let S = {sn}∞n=1 be an integer sequence, with s1 = 1 and si < si+1 for all i ∈ N. We
say that S is totally greedy (or simply, greedy) if every prefix subset {1, s2, . . . , sk} is greedy.

Totally greedy sequences are briefly mentioned in [3], where some sufficient conditions are also
given, that allow to construct greedy sequences from recurrences, although the conditions are a bit
cumbersome (see Corollary 2.12 of [3]). Here we provide a simpler set of sufficient conditions that
produce greedy sequences from second-order homogeneous recurrences.

1Also called normal, or totally orderly.
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2 Sequences of the form Gn+2 = pGn+1 + qGn

We will consider sequences
{
Gn

}∞
n=1

generated by the recurrence

Gn =


1 if n = 1,

a if n = 2,

pGn−1 + qGn−2, if n > 2,

(1)

where a, p, q are positive integers, with a > 1, and some additional restrictions that we will see later
on.
The (shifted) Fibonacci sequence

{
Fn

}∞
n=1

, defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, is a
special case of Equation 1, taking a = p = q = 1. Similarly, the Lucas numbers (Sequence A000032 of
[6]) and the Pell numbers (Sequence A000129 of [6]) are also special cases of Equation 1.
The characteristic polynomial associated with Equation 1 is x2 − px− q, and its roots are

λ =
1

2

(
p+

√
p2 + 4q

)
, µ =

1

2

(
p−

√
p2 + 4q

)
, (2)

with µ + λ = p and µλ = −q. Since the roots λ and µ are real and distinct, the general term of{
Gn

}∞
n=1

is
Gn+1 = c1λ

n + c2µ
n, (3)

where c1 =
a− µ

λ− µ
and c2 =

λ− a

λ− µ
.

It is quite easy to see that
{
Gn

}∞
n=1

is monotonically increasing, |λ| > |µ|, and λ > 1. Moreover, it
can be easily shown that λ > p and µ < 0. Now, if q ≤ p we can bound the roots λ and µ with more
precision.

Lemma 8. If
{
Gn

}∞
n=1

is a sequence defined by Equation 1, with q ≤ p, and λ and µ are the roots of
the characteristic polynomial, as defined in Equation 2, then

−1 < µ < 0 and p < λ < p+ 1.

Proof: Straightforward.
□

Note that as a consequence of the above results, c1 is always positive, while c2 can be positive or
negative, depending on a. From now on, sequences that obey Equation 1, with q ≤ p, will also be
called type-1-sequences, and they will be the main focus of this section.
Now, in order to apply Theorem 4 we have to investigate the ratio

Gn+1

Gn
=

c1λ
n + c2µ

n

c1λn−1 + c2µn−1
, (4)

where
{
Gn

}∞
n=1

is a type-1-sequence.
Dividing the numerator and the denominator by λn−1 we get

Gn+1

Gn
=

c1λ+ c2µ
(µ
λ

)n−1

c1 + c2
(µ
λ

)n−1 . (5)

Since
∣∣∣µ
λ

∣∣∣ < 1,
(µ
λ

)n−1
−→ 0, and

lim
n→∞

Gn+1

Gn
= λ ∈ (p, p+ 1). (6)

It will also be useful (and instructive) to investigate how the different subsequences of
{Gn+1

Gn

}
approach the limit value of λ.

https://oeis.org/A000032
https://oeis.org/A000129
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Lemma 9. Let
{
Gn

}∞
n=1

be a type-1-sequence. Then

1. If a < λ (respectively a > λ) the subsequence
{G2k+2

G2k+1

}∞

k=0
is monotonically increasing (respec-

tively decreasing).

2. If a < λ (respectively a > λ) the subsequence
{G2k+1

G2k

}∞

k=1
is monotonically decreasing (respec-

tively increasing).

Proof: One way of proving the monotonicity of the subsequence
{G2k+2

G2k+1

}
is by investigating the

difference
G2k+2

G2k+1
− G2k+4

G2k+3
=

G2k+2G2k+3 −G2k+1G2k+4

G2k+1G2k+3
(7)

in the first case, and the difference

G2k+1

G2k
− G2k+3

G2k+2
=

G2k+1G2k+2 −G2kG2k+3

G2kG2k+2
(8)

in the second case, i.e. in the subsequence
{G2k+1

G2k

}
. Since both denominators are positive, we will

investigate the sign of the numerators

G2k+2G2k+3 −G2k+1G2k+4 = c1c2λ
2kµ2k

(
λµ2 + λ2µ− µ3 − λ3

)
(9)

and
G2k+1G2k+2 −G2kG2k+3 = c1c2λ

2k−1µ2k−1
(
λµ2 + λ2µ− µ3 − λ3

)
, (10)

respectively.
In the first case, the sign of the expression (9) depends solely on c2, since c1, λ

2k, and µ2k are all
positive, while

(
λµ2 + λ2µ− µ3 − λ3

)
= −p

(
p2 + 4q

)
is negative. If a < λ, then c2 > 0, and (9) is

negative, which means that
{G2k+2

G2k+1

}
is increasing. On the other hand, if a > λ, then c2 < 0, and (9)

is positive, which means that
{G2k+2

G2k+1

}
is decreasing.

In the second case, the sign of the expression (10) again depends solely on c2, since c1 and λ2k−1 are
positive, while µ2k−1 and

(
λµ2 + λ2µ− µ3 − λ3

)
are negative. The rest is similar.

□

Corollary 10. Let
{
Gn

}∞
n=1

be a type-1-sequence. Then there exists an integer 2 ≤ K0 ≤ 3 such that
for all n ≥ K0 we have

Gn+1

Gn
∈ (p, p+ 1) (11)

Proof: We just have to check that 2 ≤ K0 ≤ 3. For all n ≥ 3 we have

Gn+1

Gn
=

pGn + qGn−1

Gn
= p+

qGn−1

pGn−1 + qGn−2
∈ (p, p+ 1),

since q ≤ p and qGn−2 > 0. Hence, K0 ≤ 3.

Now, if additionally a > q, then
G3

G2
= p+

q

a
∈ (p, p+ 1), hence K0 = 2.

□
Let’s denote the prefix set {1, G2, . . . , Gk} of

{
Gn

}∞
n=1

by G(k). We know that G(2) = {1, a} is always

greedy, and we will now investigate when G(3) is greedy:
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Lemma 11. Let
{
Gn

}∞
n=1

be a type-1-sequence, then G(3) = {1, a, pa + q} is (totally) greedy if, and
only if, 2 ≤ a ≤ p+ q.

Proof: By Proposition 3, the set {1, a, pa+ q} is greedy if and only if pa+ q − a belongs to the set

D(a) = {a− 1, a} ∪ {2a− 2, 2a− 1, 2a} ∪ . . . {ma−m, . . .ma} ∪ . . . .

If a > p+ q then pa+ q− a /∈ D(a), so G(3) is not greedy. Hence 2 ≤ a ≤ p+ q. Let us now check that
this condition is sufficient.
We may split the condition 2 ≤ a ≤ p+ q into two cases:

1. a < q, and

2. q ≤ a ≤ p+ q.

In the second case it is easy to see that pa + q − a ∈ D(a), hence G(3) is greedy. In the first case let

m′ =
⌈q
a

⌉
> 1.

pa+ q − a = pa+ q − a+ (m′ − 1)a− (m′ − 1)a

= (p+m′ − 1)a− (m′a− q).

Thus, pa+ q − a ∈ D(a) if, and only if, 0 ≤ m′a− q ≤ p+m′ − 1. We already know that m′a− q ≥ 0
by the definition of m′. As for the other inequality, we have

m′a− q < 2q − q = q ≤ p < p+m′ − 1.

□

Now we are in the position to prove our main result:

Theorem 12. Let
{
Gn

}∞
n=1

be a type-1-sequence with 2 ≤ a ≤ p+ q. Then
{
Gn

}∞
n=1

is totally greedy.

Proof: The theorem is proved by induction. Lemma 11 guarantees that G(3) is greedy; that would
be the base case. Now, let’s suppose that G(k) is totally greedy for some arbitrary k ≥ 3. We will prove
that G(k+1) is also greedy (and hence totally greedy).

By Lemma 8 and Corollary 10 we know that p <
Gk+1

Gk
< p+ 1, so m =

⌈Gk+1

Gk

⌉
= p+ 1. Now,

(p+ 1)Gk −Gk+1 = (p+ 1)Gk − (pGk + qGk−1)

= Gk − qGk−1 = (pGk−1 + qGk−2)− qGk−1

= (p− q)Gk−1 + qGk−2.

To conclude the proof, note that GreedyCostG(k) ((p− q)Gk−1 + qGk−2) = p−q+q = p < p+1 = m.
□

We can now apply Theorem 12 to some specific sequences, such as the (shifted) Fibonacci numbers{
Fn

}∞
n=1

= {1, 2, 3, 5, 8, 13, . . .}, and the (shifted) Pell numbers
{
Pn

}∞
n=1

= {1, 2, 5, 12, 29, 70 . . .}.
A full version of this paper, including these and other results, can be found in [9].
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