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Abstract

The aim of this paper is to address the system AX = Y , where A = (aij) ∈ Mm×n(S), Y ∈ Sm,
and X represents an unknown vector of size n, with S being an additively idempotent semiring.
Should the system possess solutions, we aim to comprehensively characterize a particular solution
as it is the so-called maximal solution with respect to an order that is induced by the addition of
the semiring. Additionally, in the specific scenario where S is what we call a generalized tropical
semiring, we offer a thorough characterization of its solutions along with an explicit estimation of
the computational cost involved in its computation.

1 Introduction

A semiring (S,+, ·) is a set S with two internal operations, +, · where (S,+) is a commutative monoid,
and (S, ·) is a monoid, being both internal operations connected by a ring-like distributivity. We also
assume that for both operations, there exists an identity element; 0 for + and 1 for ·. In addition, a
semiring (S,+, ·, 0, 1) is said to be additively idempotent if x+ x = x for all x ∈ S.

One of the most important examples of semirings are the tropical semirings. The semiring (R,min,+)
appeared in optimization problems such as Floyd’s algorithm for finding shortest paths in a graph [5].
However, a systematic study of the tropical semiring began only after the Simon’s work (see [3]) and
since then the study has significantly increased due to the huge number of applications.

The first paper [4] about linear algebra on such a semirings appeared in 2005. However, solving
linear systems was a major task from the beginning of tropical algebras, but it was not until the work
of Viro [6] that the problem actually took a most present role in mathematics. Moreover, this problem
has already proved to be very interesting from the algorithmic point of view as it is known to be in
NP ∩ coNP [7].

Letting (S,+, ·) be an additively idempotent semiring, we want to solve the system AX = Y , where
A = (aij) ∈ Mm×n(S), Y ∈ Sm and X is an unknown vector of size n. In the context where the system
AX = Y admits solutions, we can compute the maximal one. Moreover, within the specific framework
where S is a generalized tropical semiring (see Definition 1.1.1), we present a complete characterization
of all its solutions, with an explicit polynomial computational cost.

2 Preliminars

We will recall some basic background and introduce the notation we will use through this work.
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Definition 1. A semiring (R,+, ·) is a non-empty set R together with two operations + and · such
that (R,+) is a commutative monoid, (R, ·) is a monoid and the distributive laws hold:

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc
(1)

We say that (R,+, ·) is additively idempotent if a+ a = a for all a ∈ R.

Example 2. From the work of J. Zumbrägel [13], the following additively idempotent semiring with 5
elements can be obtained:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 1 1 1 1 5
2 2 1 2 1 2 5
3 3 1 1 3 3 5
4 4 1 2 3 4 5
5 5 5 5 5 5 5

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 2 0 0 5
3 0 3 4 3 4 3
4 0 4 4 0 0 3
5 0 5 2 5 2 5

Example 3. In [14], a classification of all additively commutative semirings with two elements is
presented. In that article, we can see that the set {0, 1} endowed with the following operations results
in an additively idempotent semiring:

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 1
1 1 1

Definition 4. Let R be a semiring and (M,+) be a commutative semigroup with identity 0M . M is a
right semimodule over R if there is an external operation · : M ×R → M such that

(m · a) · b = m · (a · b)
m · (a+ b) = m · a+m · b
(m+ n) · a = m · a+ n · a

0M · a = 0M

(2)

for all a, b ∈ R and m,n ∈ M . We will denote m · a by the concatenation ma.

In an additively idempotent semiring (R,+, ·), an order can be induced by the addition operation,
by:

a ≤ b if and only if a+ b = b. (3)

This order respects the operation in R and enables us to define a partial order in Rn for every positive
integer n.

X = (x1, . . . xn) ≥ Y = (y1, . . . , yn) if and only if xi ≥ yi ∀i = 1, . . . , n. (4)

In addition, note that this order also respect the multiplication by a square matrices of order n whose
entries are in R.

Let AX = Y be the system of linear equations in R with indeterminates x1, . . . , xn,
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a11
a21
...

a(m−1)1

am1

x1 +


a12
a22
...

a(m−1)2

am2

x2 + · · ·+


a1n
a2n
...

a(m−1)n

amn

xn =


y1
y2
...

ym−1

ym

 , (5)

with ai,j , yj ∈ R for all i = 1, . . . , n j = 1, . . . ,m. Let Aj be the j − th column of A, Aj =
(a1j , a2j , . . . , amj), then, the previous system can be written as

A1x1 +A2x2 + · · ·+Anxn = Y. (6)

Definition 5. Let R be an additively idempotent semiring, and let AX = Y be a linear system of
equations. We say that X̂ is the maximal solution of the system if and only if the two following
conditions are satisfied

1. X̂ ∈ Rn is a solution of the system, i.e. AX̂ = Y ,

2. if Z ∈ Rn is any other solution of the system, then Z ≤ X̂

The following result depicts a method to compute the maximal solution of such a system of equations.

Theorem 6. Given (R,+, ·) an additively idempotent semiring, let Wi = {x ∈ R : xAi + Y = Y }
∀i = 1, . . . , n. Suppose that these subsets have a maximum with respect to the order induced in R

Ci = maxWi. (7)

If XA = Y has as a solution, then X̂ = (C1, . . . Cn) is the maximal solution of the system.

Proof. If there is a solution Z = (z1, . . . , zn), then, it is enough to proof that zk · Ak + Y = Y for all
k = 1, . . . , n, and therefore we can show that zk ∈ Wk. As a consequence, X̂ ≥ Z. Finally, we show
that X̂ is a solution, and therefore, it is the maximal solution.

In [10, example 3.19], an example of a direct application of this theorem can be found.

3 Particular cases

An important example of the considered semirings is the so-called tropical semiring, which is the
semiring given by (R ∪ {∞},max,+). The following definition is a generalization of this concept.

Definition 7. Let (R,+, ·) be a semiring. We say that R is a generalized tropical semiring if

a+ b = a or a+ b = b of all a, b ∈ R.

It is straightforward that the tropical semiring is the tropicalized of R with the usual operations.

Using the argument given in the proof of the preceding theorem to this specific case, allows us to
provide the following result. A complete proof of theorems 8 and 9 can be found in [10, Theorem 3.6]
and [10, Theorem 3.12] respectively.

Theorem 8. Let (R,+, ·) be a generalized tropical semiring where (R, ·) is a group. Then the linear
system A ·X = Y has at least one solution.

Tropical lineal algebra over tropical semirings appears naturally in several problems of graph theory
(c.f. [12] or [11]). The following result shows a characterization of all solutions of the linear system
AX = Y .
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Theorem 9. Let R be a generalized tropical semiring, and let AX = Y be a system of equations with
Y = (yi) ∈ Rm and A = (ai,j) ∈ Matn×m(R). X = (x1, x2, ..., xn) is solution of the system if and only
if

1. aj,i · xi + yj = yj ,∀j = 1, . . . ,m,

2. ∀j = 1, . . . ,m ∃h ∈ {1, . . . , n} such that aj,h · xh = yj .

Another significant case is that of finite idempotent semirings, which has garnered renewed interest in
the scientific community due to its potential applications in cryptography. As an example, [8] provides
a characterization of all finite commutative simple semirings, among which one of the five possible cases
is the additively idempotent semiring.
Then, due to the finiteness of the semiring we get that

Theorem 10. Let R be an additively idempotent finite semiring, and let AX = Y be a system of
equations, with Y ∈ Rm and A = (ai,j) ∈ Matn×m(R). Then, the system is compatible, Wi = {x ∈ R :
x ·Ai + Y = Y } is finite and

X = (x1, . . . , xn) such that xi =
∑
x∈Wi

x (8)

is the maximal solution of the system.

An important consequence of this result is that we are able to provide a cryptanalysis of the key
exchange over finite semirings that are congruence simple and that is introduced in [2] and that it is
published in [9].

References

[1] J. S. Golan, Semirings and their applications, Kluwer Academic Publishers, Dordrecht, 1999, xii+381.

[2] G. Maze, C. Monico, J. Rosenthal, Public key cryptography based on semigroup actions, Adv. Math. Com-
mun. 1 (2007), 489–507.

[3] I. Simon, Limited subsets of a free monoid, in: 19th Annual Symposium on Foundations of Computer Science
(Ann Arbor, Mich., 1978), IEEE, Long Beach, CA, 1978, pp. 143–150.

[4] M. Develin, F. Santos, B. Sturmfels, On the rank of a tropical matrix, in: Combinatorial and computational
geometry, Math. Sci. Res. Inst. Publ., vol. 52, Cambridge Univ. Press, Cambridge, 2005, pp. 213–242.

[5] R. W. Floyd, Algorithm 97: Shortest Path, Commun. ACM 5(6) (1962), 345. https://doi.org/10.1145/
367766.368168

[6] O. Viro, Dequantization of Real Algebraic Geometry on Logarithmic Paper, in: European Congress of
Mathematics, eds. Carles Casacuberta, Rosa Maria Miró-Roig, Joan Verdera, Sebastià Xambó-Descamps,
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