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Abstract

In [7], Higashitani, Kummer, and Micha lek pose a conjecture about the symmetric edge polytopes
of complete multipartite graphs and confirm it for a number of families in the bipartite case. We
confirm that conjecture for a number of new classes following the authors’ methods and we present
a more general result which suggests that the methods in their current form might not be enough
to prove the conjecture in full generality.

1 Introduction

This paper is an extended abstract of our recent work [8] for the Discrete Mathematics Day 2024. It
contains the main results from Sections 3 and 4.

A lattice polytope is a convex polytope P ⊂ Rn which can be written as the convex hull of finitely
many elements of Zn. Lattice polytopes arise naturally from attempts to endow combinatorial objects
with a geometric structure. A family of lattice polytopes that has garnered some attention in recent
years is that of symmetric edge polytopes, which are a type of graph polytopes. For graphs, we will
henceforth use the notation G = (V,E) where V denotes the set of vertices and E denotes the set of
edges of G. Given a graph G = (V,E), we thus define its symmetric edge polytope as follows

PG = conv{±(ev − ew) : {v, w} ∈ E} ⊂ R|V | .

Here, the vectors ev are elements that form a lattice basis of Z|V |. For more context on symmetric edge
polytopes, see e.g. [6, 9].

Next, we define the lattice-point enumerator of a set S ⊂ Rn as the function ES : N → N via
ES(k) = |kS ∩Zn|. If S is a lattice polytope, ES is a polynomial which we call the Ehrhart polynomial
of S. The generating function of an Ehrhart polynomial is called Ehrhart series and can be written as

ehrP (t) =
∑
k≥0

EP (k)tk =
h∗(t)

(1 − t)d+1
,

where h∗(t) is a polynomial with non-negative integer coefficients of degree d or less. We call this
polynomial the h∗-polynomial of P . The Ehrhart polynomial and the h∗-polynomial hold valuable
information about the underlying polytope, such as its (normalised) volume and the volume of its
boundary. A specifically remarkable piece of information encoded by the h∗-polynomial is that of
reflexivity: A lattice polytope is called reflexive if its polar dual is also a lattice polytope. By a result
by Hibi [5], P is reflexive if and only if its h∗-polynomial is palindromic, i.e., h∗P (t) =

∑d
i=0 h

∗
i (t) satisfies

h∗i = h∗d−i for all 0 ≤ i ≤ d, and its degree is equal to dimP .

∗The full version of this work can be found in [8] and will be published elsewhere.
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With some basic knowledge of generating functions (see e.g. [12]), one can check that knowing
the Ehrhart polynomial of a lattice polytope amounts to knowing its h∗-polynomial. However, the
converse is also true. Given the h∗-polynomial h∗P (t) =

∑d
i=0 h

∗
i t

i of some lattice polytope P , the
Ehrhart polynomial can be written as

EP (x) =
d∑

i=0

h∗i

(
d + x− i

d

)
.

For more context on Ehrhart theory, see e.g. [1]. One aspect of research in Ehrhart theory is the study of
the roots of Ehrhart polynomials when their domain and range are extended from N to C. For example
in the case of reflexive polytopes, their Ehrhart polynomial roots exhibit symmetry not only across
the real axis (i.e. if z is a root then so is its complex conjugate) but also, due to Ehrhart-Macdonald
reciprocity and palindromicity of the h∗-polynomial, across the canonical line, i.e. set

CL =

{
z ∈ C : ℜ(z) = −1

2

}
where ℜ(z) denotes the real part of z ∈ C. This is to say that if z is a root then so is −1−z. Thus, it is
natural to ask, what kind of polytopes have all of their Ehrhart polynomial roots on CL. First steps in
this direction were made in [2] and [10], albeit in different contexts. In [9], the study of CL-polytopes,
i.e., polytopes with all their Ehrhart polynomial roots on CL, has been initiated as a field of study
in its own right. For low dimensions, a full classification was found in [4]. Some classes of examples
include cross-polytopes, standard reflexive simplices, and root polytopes of type A.

For the rest of the paper, let Ka1,...,ak denote the complete multipartite graph with k multipartite
classes of of sizes a1 through ak. The Ehrhart polynomial of PKa1,...,ak

shall be denoted by Ea1,...,ak .
In [7], the authors studied the roots of E2,n and E3,n and were able to prove that PK2,n and PK3,n

are CL-polytopes. This extends the case of cross-polytopes, which are unimodularly equivalent to the
symmetric edge polytopes of K1,n. They accomplished that by using the technique of interlacing polyno-
mials. Let f, g be polynomials of degree d+ 1 and d with roots

{
−1

2 + i a1,−1
2 + i a2, . . . ,−1

2 + i ad+1

}
and

{
−1

2 + i b1,−1
2 + i b2, . . . ,−1

2 + i bd
}

respectively for aj , bj ∈ R. Then we say that g CL-interlaces
f if

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ bd ≤ ad+1.

For more on the theory of interlacing polynomials, see [3]. The authors gave the following conjecture.

Conjecture 1 (Conjecture 4.10 in [7]). (i) For any complete multipartite graph Ka1,...,ak the Ehrhart
polynomial Ea1,...,ak has its roots on CL.

(ii) Suppose a1 ≤ · · · ≤ ak. The two Ehrhart polynomials Ea1,...,ak and Ea1,a2,...,ak−1 interlace on CL.

In Section 2, we will prove CL-ness of E1,1,n, E1,2,n, and E1,1,1,n, as well as some conditional results
(Theorem 9), using the techniques from [7]. In Section 3, we will investigate the connection between
the γ-vector of the h∗-polynomial of an Ehrhart polynomial and the existence of recursive relations
that generalise those in [7]. However, we also provide evidence for why their methods might not be
enough to prove Conjecture 1 any further.

2 New recursive relations

In this section, we gather new evidence for Conjecture 1. First, we state the relevant h∗-polynomials.

Proposition 2 (Theorem 4.1 in [6]). For all a, b ≥ 0 let h∗a,b(t) denote the h∗-polynomial of the
symmetric edge polytope of Ka+1,b+1. Then

h∗a,b(t) =

min{a,b}∑
i=0

(
2i

i

)(
a

i

)(
b

i

)
ti(1 + t)a+b+1−2i.
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Proposition 3. The h∗-polynomials of the symmetric edge polytopes of the graphs K1,m,n, K1,1,1,n,
and K2,2,n, are given as follows.

(a) h∗1,m,n(t) =
∑min(m,n)

i=0

(
2i
i

)(
m
i

)(
n
i

)
ti(1 + t)m+n−2i

(b) h∗1,1,1,n(t) = 3(n− 1)n(1 + t)n−2t2 + 2(2n + 1)(1 + t)nt + (1 + t)n+2

(c) h∗2,2,n(t) = 20
(
n
3

)
(1 + t)n−3t3 + 2

(
3n
2

)
(1 + t)n−1t2 + 2

(
3n+1

1

)
(1 + t)n+1t + (1 + t)n+3

Since the proof is very technical, we will proceed directly to introducing a proposition which supplies
a useful tool for checking CL-interlacing.

Proposition 4 (Lemmas 2.3, 2.4, 2.5 in [7]). Let f, g, h1, . . . , hn be Ehrhart polynomials of reflexive
polytopes such that deg f = deg g + 1 = deg hi + 2 for all 1 ≤ i ≤ n. Assume the identity

f(x) = (2x + 1)α g(x) +
n∑

i=1

αi hi(x)

where α, αi > 0 for all i. Then
∑n

i=1 αi hi CL-interlaces g if for every i, hi CL-interlaces g. Also, the
following are equivalent.

(a)
∑n

i=1 αi hi CL-interlaces g,

(b) g CL-interlaces f .

If this is the case, (2x + 1)
∑n

i=1 αi hi CL-interlaces f .

An important class of reflexive polytopes is the class of cross-polytopes which are defined as the convex
hull of the vectors ±e1,±e2, . . . ,±en ∈ Rn. As mentioned in the introduction, they are unimodularly
equivalent to PK1,n . The Ehrhart polynomial of the n-dimensional cross-polytope (the n-th cross-
polynomial) is given by

Cn(x) =

n∑
k=0

(
n

k

)(
n + x− k

n

)
.

Cross-polynomials are the first class of examples to showcase the usefulness of Proposition 4.

Proposition 5 (Example 3.3 in [7]). For any n ≥ 2, cross-polynomials satisfy the recursive relation

Cn(x) =
1

n
(2x + 1) Cn−1(x) +

n− 1

n
Cn−2(x).

Other classes of examples were found by Higashitani, Kummer, and Micha lek in [7]. The authors
found three recursive relations among Ehrhart polynomials E1,n, E2,n, E3,n.

Proposition 6 (Proposition 4.5 in [7]). The following relations hold:

E2,n(x) =
1

2
(2x + 1)E1,n(x) +

1

2
E1,n−1(x),

E2,n(x) =
1

n
(2x + 1)E2,n−1(x) +

1

2n
(nE1,n−1(x) + (n− 2) (2x + 1)E1,n−2(x)) ,

E3,n+1(x) =
(2x + 1)(3n2 + 13n + 16)

8(n2 + 5n + 6)
E2,n+1(x)

+
n3 + 13n2 + 18n

8(n− 1)(n2 + 5n + 6)
E2,n(x) +

4n3 + 9n2 − 13n− 32

8(n− 1)(n2 + 5n + 6)
E1,n+1(x).

Using this, the authors were able to prove the following result.
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Proposition 7 (Lemmas 4.6-4.8, Theorem 4.9 in [7]). The following statements hold for every positive
integer n.

(a) E1,n CL-interlaces E1,n+1.

(b) E1,n and (2x + 1)E1,n−1 CL-interlace E2,n.

(c) E2,n CL-interlaces E2,n+1.

(d) E2,n CL-interlaces E3,n.

In particular, for every positive integer n, the Ehrhart polynomial of Km,n is a CL-polynomial if m ≤ 2.

To extend this result, we start by finding new recursive relations.

Proposition 8. For every n ≥ 2 there exist non-negative rational numbers α1, . . . , α35 such that the
following statements hold.

E1,1,n(x) = α1 (2x + 1)E1,n(x) + α2E1,n−1(x),

E1,1,n+1(x) = α3 (2x + 1)E1,1,n(x) + α4E1,1,n−1(x) + α5E1,n(x),

E1,2,n(x) = α6 (2x + 1)E1,1,n(x) + α7E1,1,n−1(x) + α8E1,n(x),

E1,2,n+1(x) = α9 (2x + 1)E1,2,n(x) + α10E1,2,n−1(x) + α11E1,1,n(x) + α12E1,n+1(x)

E1,1,1,n(x) = α13 (2x + 1)E1,1,n(x) + α14E1,1,n−1(x) + α15E1,n(x)

E4,n(x) = α16 (2x + 1)E3,n(x) + α17E3,n−1(x) + α18E2,n(x) + α19E1,n+1(x),

E3,n+1(x) = α20 (2x + 1)E3,n(x) + α21E3,n−1(x) + α22E2,n(x) + α23E1,n+1(x),

E2,2,n(x) = α24 (2x + 1)E1,2,n(x) + α25E1,2,n−1(x) + α26E1,1,n(x) + α27E1,n+1(x),

E1,3,n(x) = α28 (2x + 1)E1,2,n(x) + α29E1,2,n−1(x) + α30E1,1,n(x) + α31E1,n+1(x),

E1,1,1,n+1(x) = α32 (2x + 1)E1,1,1,n(x) + α33E1,1,1,n−1(x) + α34E1,1,n(x) + α35E1,n+1(x).

These relations can be obtained algorithmically. We explain the method using the first identity
as an example. The identity holds if and only if it holds after replacing E1,1,n(x), (2x + 1)E1,n(x),
and E1,n−1(x) by their respective generating functions. All three of these can be obtained from h∗-
polynomials given in Propositions 2 and 3. After dividing by the left-hand side, the right hand side
becomes a rational function whose numerator polynomial has coefficients which are either constant or
linear in α1 and α2. The left-hand side becomes 1. Thus, on the right-hand side, we can compare the
coefficients of the numerator polynomial with those of the denominator polynomial and solve for α1 and
α2. Note however, that in general there need not be a solution. A SAGEMATH [11] implementation
of this algorithm is available on

https://github.com/maxkoelbl/seps_multipartite_graphs/.

We can state the main result of this section.

Theorem 9. The following statements hold for every positive integer n.

(a) E1,n CL-interlaces E1,1,n.

(b) E1,1,n CL-interlaces E1,1,n+1.

(c) E1,1,n CL-interlaces E1,2,n.

(d) E1,1,n CL-interlaces E1,1,1,n.

(e) E3,n CL-interlaces E4,n if E1,n+1 CL-interlaces E3,n.

(f) E1,2,n CL-interlaces E1,3,n if E1,n+1 CL-interlaces E1,2,n.

(g) E1,2,n CL-interlaces E2,2,n if E1,n+1 CL-interlaces E1,2,n.

In particular, for every positive integer n, Ex,y,z,n is a CL-polynomial for x+ y + z ≤ 3 and x, y, z ≥ 0.

https://github.com/maxkoelbl/seps_multipartite_graphs/
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3 Recursive relations and the γ-vector

Looking at the recursive relations in Propositions 6 and 8, we may notice that as the parameters
a1, . . . , ak−1 of the multipartite graphs increase, then so does the complexity of the identities involving
them. The results of this section show that this is not a coincidence. The key object here is the γ-vector
of the h∗-polynomial of an Ehrhart polynomial.

Definition 10. Let h be a palindromic polynomial of degree d. We define the γ-vector as the polynomial∑⌊ d
2⌋

i=0 γit
i such that h(t) =

∑⌊ d
2⌋

i=0 γi(1 + t)d−2iti. We call the degree of the γ-vector the γ-degree of h.

Proposition 11. Let p be a polynomial of degree d and let h be a polynomial defined by

h(t) = (1 − t)d+1
∑
k≥0

p(k) tk.

If h is a palindromic polynomial with γ-vector γ, we get

p(x) =

deg γ∑
i=0

(−1)ici Cd−2i(x).

where ci =
∑deg γ

j=i
1
4j

(
j
i

)
γj.

In the setting of Proposition 11, we call the γ-degree of h the cross-degree of p. It is the key ingredient
of this section’s main theorem.

Theorem 12. Let f be a degree d+1 polynomial with cross-degree m+1, let g be a degree d polynomial
with cross-degree m, and let hi be degree d − 1 polynomials with cross-degree i for 1 ≤ i ≤ m. Then
there exist unique real numbers α, α1, α2, . . . , αm which satisfy

f(x) = (2x + 1)α g(x) +
m∑
i=1

αi hi(x).

For complete bipartite graphs, Proposition 2 shows that the γ-degree of the h∗-polynomial of Km,n

is min{m,n} − 1. Thus, we get the following an immediate corollary.

Corollary 13. Let n be a positive integer. For 1 ≤ m ≤ n there exist unique α, α0, α1, . . . , αm−1 and
β, β0, β1, . . . , βm−1 in R such that the following equations are satisfied.

Em+1,n+1(x) = (2x + 1)αEm,n+1(x) +
m−1∑
i=0

αiEm−i,n+i(x)

Em,n+1(x) = (2x + 1)β Em,n(x) +
m−1∑
i=0

βiEm−i,n+i−1(x)

This corollary alone is not enough to prove Conjecture 1 for all Km,n for two crucial reasons. Firstly,
as m increases, the number of interlacings having to be satisfied increases too, and they are between
polynomials whose cross-degrees puts them outside the scope of Theorem 12. This is noticeable in
the last four statements of Theorem 9 where the interlacing of cross-degree 3 polynomials by cross-
degree 2-polynomials depends on the interlacing of a cross-degree 2-polynomial by a cross-degree 0
polynomial. Secondly, there is no guarantee that the coefficients α, α1, . . . , αm are non-negative. In
fact, for m ≥ 4, explicit computations reveal that α2, . . . , αm−2 are always negative. In the case m = 4,
we get α2 = n−n3

8(5n3+39n2+100n+96)
. To see the parameters for every 1 ≤ m ≤ 10, we refer once again to

the corresponding SAGEMATH code in the previously mentioned github repository.
We end by presenting a conjecture.
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Conjecture 14. Let a1 ≤ a2 ≤ · · · ≤ ak ≤ n be positive integers and let m denote the cross-degree of
the Ehrhart polynomial of the symmetric edge polytope of Ka1,a2,...,ak . Then the inequalities⌊∑k

i=1 ai
2

⌋
≤ m + 1 ≤

k∑
i=1

ai.

hold. Furthermore, the Ehrhart polynomial of the symmetric edge polytope of the graph K1k,n interlaces

that of K1k+1,n, where 1k represents a list k of ones. For k + n ≤ 10, this has been computationally
confirmed.
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