On a conjecture concerning the roots of Ehrhart polynomials of symmetric edge polytopes from complete multipartite graphs[∗]

 Max Kölbl^{†1}

¹Dept. of Pure and Applied Mathematics, Osaka University, 565-0871 Suita

Abstract

In [\[7\]](#page-5-0), Higashitani, Kummer, and Michalek pose a conjecture about the symmetric edge polytopes of complete multipartite graphs and confirm it for a number of families in the bipartite case. We confirm that conjecture for a number of new classes following the authors' methods and we present a more general result which suggests that the methods in their current form might not be enough to prove the conjecture in full generality.

1 Introduction

This paper is an extended abstract of our recent work [\[8\]](#page-5-1) for the Discrete Mathematics Day 2024. It contains the main results from Sections 3 and 4.

A *lattice polytope* is a convex polytope $P \subset \mathbb{R}^n$ which can be written as the convex hull of finitely many elements of \mathbb{Z}^n . Lattice polytopes arise naturally from attempts to endow combinatorial objects with a geometric structure. A family of lattice polytopes that has garnered some attention in recent years is that of symmetric edge polytopes, which are a type of graph polytopes. For graphs, we will henceforth use the notation $G = (V, E)$ where V denotes the set of vertices and E denotes the set of edges of G. Given a graph $G = (V, E)$, we thus define its symmetric edge polytope as follows

$$
P_G = \text{conv}\{\pm(e_v - e_w) : \{v, w\} \in E\} \subset \mathbb{R}^{|V|}.
$$

Here, the vectors e_v are elements that form a lattice basis of $\mathbb{Z}^{|V|}$. For more context on symmetric edge polytopes, see e.g. [\[6,](#page-5-2) [9\]](#page-5-3).

Next, we define the *lattice-point enumerator* of a set $S \subset \mathbb{R}^n$ as the function $E_S: \mathbb{N} \to \mathbb{N}$ via $E_S(k) = |kS \cap \mathbb{Z}^n|$. If S is a lattice polytope, E_S is a polynomial which we call the *Ehrhart polynomial* of S. The generating function of an Ehrhart polynomial is called Ehrhart series and can be written as

$$
\operatorname{ehr}_P(t) = \sum_{k \ge 0} E_P(k)t^k = \frac{h^*(t)}{(1-t)^{d+1}},
$$

where $h^*(t)$ is a polynomial with non-negative integer coefficients of degree d or less. We call this polynomial the h^* -polynomial of P. The Ehrhart polynomial and the h^* -polynomial hold valuable information about the underlying polytope, such as its (normalised) volume and the volume of its boundary. A specifically remarkable piece of information encoded by the h^* -polynomial is that of reflexivity: A lattice polytope is called reflexive if its polar dual is also a lattice polytope. By a result by Hibi [\[5\]](#page-5-4), P is reflexive if and only if its h^{*}-polynomial is *palindromic*, i.e., $h_P^*(t) = \sum_{i=0}^d h_i^*(t)$ satisfies $h_i^* = h_{d-i}^*$ for all $0 \le i \le d$, and its degree is equal to dim P.

[∗]The full version of this work can be found in [\[8\]](#page-5-1) and will be published elsewhere.

[†]Email: max.koelbl@ist.osaka-u.ac.jp

With some basic knowledge of generating functions (see e.g. [\[12\]](#page-5-5)), one can check that knowing the Ehrhart polynomial of a lattice polytope amounts to knowing its h^* -polynomial. However, the converse is also true. Given the h^{*}-polynomial $h_P^*(t) = \sum_{i=0}^d h_i^* t^i$ of some lattice polytope P, the Ehrhart polynomial can be written as

$$
E_P(x) = \sum_{i=0}^{d} h_i^* \binom{d+x-i}{d}.
$$

For more context on Ehrhart theory, see e.g. [\[1\]](#page-5-6). One aspect of research in Ehrhart theory is the study of the roots of Ehrhart polynomials when their domain and range are extended from $\mathbb N$ to $\mathbb C$. For example in the case of reflexive polytopes, their Ehrhart polynomial roots exhibit symmetry not only across the real axis (i.e. if z is a root then so is its complex conjugate) but also, due to Ehrhart-Macdonald reciprocity and palindromicity of the h^* -polynomial, across the *canonical line*, i.e. set

$$
\mathrm{CL} = \left\{ z \in \mathbb{C} \colon \Re(z) = -\frac{1}{2} \right\}
$$

where $\Re(z)$ denotes the real part of $z \in \mathbb{C}$. This is to say that if z is a root then so is $-1-z$. Thus, it is natural to ask, what kind of polytopes have all of their Ehrhart polynomial roots on CL. First steps in this direction were made in $[2]$ and $[10]$, albeit in different contexts. In $[9]$, the study of CL-polytopes, i.e., polytopes with all their Ehrhart polynomial roots on CL, has been initiated as a field of study in its own right. For low dimensions, a full classification was found in [\[4\]](#page-5-9). Some classes of examples include cross-polytopes, standard reflexive simplices, and root polytopes of type A.

For the rest of the paper, let $K_{a_1,...,a_k}$ denote the complete multipartite graph with k multipartite classes of of sizes a_1 through a_k . The Ehrhart polynomial of $P_{K_{a_1,...,a_k}}$ shall be denoted by $E_{a_1,...,a_k}$. In [\[7\]](#page-5-0), the authors studied the roots of $E_{2,n}$ and $E_{3,n}$ and were able to prove that $P_{K_{2,n}}$ and $P_{K_{3,n}}$ are CL-polytopes. This extends the case of cross-polytopes, which are unimodularly equivalent to the symmetric edge polytopes of $K_{1,n}$. They accomplished that by using the technique of *interlacing polyno*mials. Let f, g be polynomials of degree $d+1$ and d with roots $\{-\frac{1}{2}+i a_1, -\frac{1}{2}+i a_2, \ldots, -\frac{1}{2}+i a_{d+1}\}$ and $\{-\frac{1}{2}+i b_1, -\frac{1}{2}+i b_2, \ldots, -\frac{1}{2}+i b_d\}$ respectively for $a_j, b_j \in \mathbb{R}$. Then we say that g CL-interlaces f if

$$
a_1 \le b_1 \le a_2 \le b_2 \le \cdots \le b_d \le a_{d+1}.
$$

For more on the theory of interlacing polynomials, see [\[3\]](#page-5-10). The authors gave the following conjecture.

Conjecture 1 (Conjecture 4.10 in [\[7\]](#page-5-0)). (i) For any complete multipartite graph $K_{a_1,...,a_k}$ the Ehrhart polynomial $E_{a_1,...,a_k}$ has its roots on CL.

(ii) Suppose $a_1 \leq \cdots \leq a_k$. The two Ehrhart polynomials $E_{a_1,...,a_k}$ and $E_{a_1,a_2,...,a_k-1}$ interlace on CL.

In Section 2, we will prove CL-ness of $E_{1,1,n}$, $E_{1,2,n}$, and $E_{1,1,1,n}$, as well as some conditional results (Theorem [9\)](#page-3-0), using the techniques from [\[7\]](#page-5-0). In Section 3, we will investigate the connection between the γ -vector of the h^{*}-polynomial of an Ehrhart polynomial and the existence of recursive relations that generalise those in [\[7\]](#page-5-0). However, we also provide evidence for why their methods might not be enough to prove Conjecture [1](#page-1-0) any further.

2 New recursive relations

In this section, we gather new evidence for Conjecture [1.](#page-1-0) First, we state the relevant h^* -polynomials.

Proposition 2 (Theorem 4.1 in [\[6\]](#page-5-2)). For all $a, b \ge 0$ let $h^*_{a,b}(t)$ denote the h^* -polynomial of the symmetric edge polytope of $K_{a+1,b+1}$. Then

$$
h_{a,b}^*(t) = \sum_{i=0}^{\min\{a,b\}} \binom{2i}{i} \binom{a}{i} \binom{b}{i} t^i (1+t)^{a+b+1-2i}.
$$

Proposition 3. The h^* -polynomials of the symmetric edge polytopes of the graphs $K_{1,m,n}$, $K_{1,1,1,n}$, and $K_{2,2,n}$, are given as follows.

(a)
$$
h_{1,m,n}^*(t) = \sum_{i=0}^{\min(m,n)} {2i \choose i} {m \choose i} t^i (1+t)^{m+n-2i}
$$

\n(b) $h_{1,1,1,n}^*(t) = 3(n-1)n(1+t)^{n-2}t^2 + 2(2n+1)(1+t)^n t + (1+t)^{n+2}$
\n(c) $h_{2,2,n}^*(t) = 20 {n \choose 3} (1+t)^{n-3}t^3 + 2 {3n \choose 2} (1+t)^{n-1}t^2 + 2 {3n+1 \choose 1} (1+t)^{n+1}t + (1+t)^{n+3}$

Since the proof is very technical, we will proceed directly to introducing a proposition which supplies a useful tool for checking CL-interlacing.

Proposition 4 (Lemmas 2.3, 2.4, 2.5 in [\[7\]](#page-5-0)). Let f, g, h_1, \ldots, h_n be Ehrhart polynomials of reflexive polytopes such that $\deg f = \deg g + 1 = \deg h_i + 2$ for all $1 \leq i \leq n$. Assume the identity

$$
f(x) = (2x + 1) \alpha g(x) + \sum_{i=1}^{n} \alpha_i h_i(x)
$$

where $\alpha, \alpha_i > 0$ for all i. Then $\sum_{i=1}^n \alpha_i h_i$ CL-interlaces g if for every i, h_i CL-interlaces g. Also, the following are equivalent.

- (a) $\sum_{i=1}^{n} \alpha_i h_i$ CL-interlaces g,
- (b) g $CL-interlaces f$.

If this is the case, $(2x+1)\sum_{i=1}^n \alpha_i h_i$ CL-interlaces f.

An important class of reflexive polytopes is the class of *cross-polytopes* which are defined as the convex hull of the vectors $\pm e_1, \pm e_2, \ldots, \pm e_n \in \mathbb{R}^n$. As mentioned in the introduction, they are unimodularly equivalent to $P_{K_{1,n}}$. The Ehrhart polynomial of the *n*-dimensional cross-polytope (the *n*-th crosspolynomial) is given by

$$
\mathcal{C}_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{n+x-k}{n}.
$$

Cross-polynomials are the first class of examples to showcase the usefulness of Proposition [4.](#page-2-0)

Proposition 5 (Example 3.3 in [\[7\]](#page-5-0)). For any $n \geq 2$, cross-polynomials satisfy the recursive relation

$$
C_n(x) = \frac{1}{n} (2x+1) C_{n-1}(x) + \frac{n-1}{n} C_{n-2}(x).
$$

Other classes of examples were found by Higashitani, Kummer, and Michalek in [\[7\]](#page-5-0). The authors found three recursive relations among Ehrhart polynomials $E_{1,n}, E_{2,n}, E_{3,n}$.

Proposition 6 (Proposition 4.5 in [\[7\]](#page-5-0)). The following relations hold:

$$
E_{2,n}(x) = \frac{1}{2} (2x+1) E_{1,n}(x) + \frac{1}{2} E_{1,n-1}(x),
$$

\n
$$
E_{2,n}(x) = \frac{1}{n} (2x+1) E_{2,n-1}(x) + \frac{1}{2n} (n E_{1,n-1}(x) + (n-2) (2x+1) E_{1,n-2}(x)),
$$

\n
$$
E_{3,n+1}(x) = \frac{(2x+1)(3n^2+13n+16)}{8(n^2+5n+6)} E_{2,n+1}(x) + \frac{n^3+13n^2+18n}{8(n-1)(n^2+5n+6)} E_{2,n}(x) + \frac{4n^3+9n^2-13n-32}{8(n-1)(n^2+5n+6)} E_{1,n+1}(x).
$$

Using this, the authors were able to prove the following result.

Proposition 7 (Lemmas 4.6-4.8, Theorem 4.9 in [\[7\]](#page-5-0)). The following statements hold for every positive integer n.

- (a) $E_{1,n}$ CL-interlaces $E_{1,n+1}$.
- (b) $E_{1,n}$ and $(2x+1)E_{1,n-1}$ CL-interlace $E_{2,n}$.
- (c) $E_{2,n}$ CL-interlaces $E_{2,n+1}$.
- (d) $E_{2,n}$ CL-interlaces $E_{3,n}$

In particular, for every positive integer n, the Ehrhart polynomial of $K_{m,n}$ is a CL-polynomial if $m \leq 2$.

To extend this result, we start by finding new recursive relations.

Proposition 8. For every $n \geq 2$ there exist non-negative rational numbers $\alpha_1, \ldots, \alpha_{35}$ such that the following statements hold.

$$
E_{1,1,n}(x) = \alpha_1 (2x + 1) E_{1,n}(x) + \alpha_2 E_{1,n-1}(x),
$$

\n
$$
E_{1,1,n+1}(x) = \alpha_3 (2x + 1) E_{1,1,n}(x) + \alpha_4 E_{1,1,n-1}(x) + \alpha_5 E_{1,n}(x),
$$

\n
$$
E_{1,2,n}(x) = \alpha_6 (2x + 1) E_{1,1,n}(x) + \alpha_7 E_{1,1,n-1}(x) + \alpha_8 E_{1,n}(x),
$$

\n
$$
E_{1,2,n+1}(x) = \alpha_9 (2x + 1) E_{1,2,n}(x) + \alpha_{10} E_{1,2,n-1}(x) + \alpha_{11} E_{1,1,n}(x) + \alpha_{12} E_{1,n+1}(x)
$$

\n
$$
E_{1,1,1,n}(x) = \alpha_{13} (2x + 1) E_{1,1,n}(x) + \alpha_{14} E_{1,1,n-1}(x) + \alpha_{15} E_{1,n}(x)
$$

\n
$$
E_{4,n}(x) = \alpha_{16} (2x + 1) E_{3,n}(x) + \alpha_{17} E_{3,n-1}(x) + \alpha_{18} E_{2,n}(x) + \alpha_{19} E_{1,n+1}(x),
$$

\n
$$
E_{3,n+1}(x) = \alpha_{20} (2x + 1) E_{3,n}(x) + \alpha_{21} E_{3,n-1}(x) + \alpha_{22} E_{2,n}(x) + \alpha_{23} E_{1,n+1}(x),
$$

\n
$$
E_{2,2,n}(x) = \alpha_{24} (2x + 1) E_{1,2,n}(x) + \alpha_{25} E_{1,2,n-1}(x) + \alpha_{26} E_{1,1,n}(x) + \alpha_{27} E_{1,n+1}(x),
$$

\n
$$
E_{1,3,n}(x) = \alpha_{28} (2x + 1) E_{1,2,n}(x) + \alpha_{29} E_{1,2,n-1}(x) + \alpha_{30} E_{1,1,n}(x) + \alpha_{31} E_{1,n+1}(x),
$$

\n
$$
E_{1,1,1,n+1}(x) = \alpha_{32} (2x + 1) E_{1,
$$

These relations can be obtained algorithmically. We explain the method using the first identity as an example. The identity holds if and only if it holds after replacing $E_{1,1,n}(x)$, $(2x+1)E_{1,n}(x)$, and $E_{1,n-1}(x)$ by their respective generating functions. All three of these can be obtained from h^* polynomials given in Propositions [2](#page-1-1) and [3.](#page-2-1) After dividing by the left-hand side, the right hand side becomes a rational function whose numerator polynomial has coefficients which are either constant or linear in α_1 and α_2 . The left-hand side becomes 1. Thus, on the right-hand side, we can compare the coefficients of the numerator polynomial with those of the denominator polynomial and solve for α_1 and α_2 . Note however, that in general there need not be a solution. A SAGEMATH [\[11\]](#page-5-11) implementation of this algorithm is available on

https://github.com/maxkoelbl/seps_multipartite_graphs/.

We can state the main result of this section.

Theorem 9. The following statements hold for every positive integer n.

- (a) $E_{1,n}$ CL-interlaces $E_{1,1,n}$.
- (b) $E_{1,1,n}$ CL-interlaces $E_{1,1,n+1}$.
- (c) $E_{1,1,n}$ CL-interlaces $E_{1,2,n}$.
- (d) $E_{1,1,n}$ CL-interlaces $E_{1,1,1,n}$.
- (e) $E_{3,n}$ CL-interlaces $E_{4,n}$ if $E_{1,n+1}$ CL-interlaces $E_{3,n}$.
- (f) $E_{1,2,n}$ CL-interlaces $E_{1,3,n}$ if $E_{1,n+1}$ CL-interlaces $E_{1,2,n}$.
- (g) $E_{1,2,n}$ CL-interlaces $E_{2,2,n}$ if $E_{1,n+1}$ CL-interlaces $E_{1,2,n}$.

In particular, for every positive integer n, $E_{x,y,z,n}$ is a CL-polynomial for $x+y+z\leq 3$ and $x, y, z \geq 0$.

3 Recursive relations and the γ -vector

Looking at the recursive relations in Propositions [6](#page-2-2) and [8,](#page-3-1) we may notice that as the parameters a_1, \ldots, a_{k-1} of the multipartite graphs increase, then so does the complexity of the identities involving them. The results of this section show that this is not a coincidence. The key object here is the γ -vector of the h ∗ -polynomial of an Ehrhart polynomial.

Definition 10. Let h be a palindromic polynomial of degree d. We define the γ -vector as the polynomial $\sum_{i=0}^{\left\lfloor \frac{d}{2} \right\rfloor} \gamma_i t^i$ such that $h(t) = \sum_{i=0}^{\left\lfloor \frac{d}{2} \right\rfloor} \gamma_i (1+t)^{d-2i} t^i$. We call the degree of the γ -vector the γ -degree of h.

Proposition 11. Let p be a polynomial of degree d and let h be a polynomial defined by

$$
h(t) = (1 - t)^{d+1} \sum_{k \ge 0} p(k) t^k.
$$

If h is a palindromic polynomial with γ -vector γ , we get

$$
p(x) = \sum_{i=0}^{\deg \gamma} (-1)^i c_i \mathcal{C}_{d-2i}(x).
$$

where $c_i = \sum_{j=i}^{\text{deg}\,\gamma} \frac{1}{4^j}$ $rac{1}{4^j}$ $\binom{j}{i}$ $\int\limits_{i}^{j} \rangle \gamma_{j}$.

In the setting of Proposition [11,](#page-4-0) we call the γ -degree of h the *cross-degree* of p. It is the key ingredient of this section's main theorem.

Theorem 12. Let f be a degree $d+1$ polynomial with cross-degree $m+1$, let g be a degree d polynomial with cross-degree m, and let h_i be degree $d-1$ polynomials with cross-degree i for $1 \le i \le m$. Then there exist unique real numbers $\alpha, \alpha_1, \alpha_2, \ldots, \alpha_m$ which satisfy

$$
f(x) = (2x + 1) \alpha g(x) + \sum_{i=1}^{m} \alpha_i h_i(x).
$$

For complete bipartite graphs, Proposition [2](#page-1-1) shows that the γ -degree of the h^* -polynomial of $K_{m,n}$ is min $\{m, n\}$ – 1. Thus, we get the following an immediate corollary.

Corollary 13. Let n be a positive integer. For $1 \leq m \leq n$ there exist unique $\alpha, \alpha_0, \alpha_1, \ldots, \alpha_{m-1}$ and β , β_0 , β_1 , ..., β_{m-1} in R such that the following equations are satisfied.

$$
E_{m+1,n+1}(x) = (2x + 1) \alpha E_{m,n+1}(x) + \sum_{i=0}^{m-1} \alpha_i E_{m-i,n+i}(x)
$$

$$
E_{m,n+1}(x) = (2x + 1) \beta E_{m,n}(x) + \sum_{i=0}^{m-1} \beta_i E_{m-i,n+i-1}(x)
$$

This corollary alone is not enough to prove Conjecture [1](#page-1-0) for all $K_{m,n}$ for two crucial reasons. Firstly, as m increases, the number of interlacings having to be satisfied increases too, and they are between polynomials whose cross-degrees puts them outside the scope of Theorem [12.](#page-4-1) This is noticeable in the last four statements of Theorem [9](#page-3-0) where the interlacing of cross-degree 3 polynomials by crossdegree 2-polynomials depends on the interlacing of a cross-degree 2-polynomial by a cross-degree 0 polynomial. Secondly, there is no guarantee that the coefficients $\alpha, \alpha_1, \ldots, \alpha_m$ are non-negative. In fact, for $m \geq 4$, explicit computations reveal that $\alpha_2, \ldots, \alpha_{m-2}$ are always negative. In the case $m = 4$, we get $\alpha_2 = \frac{n-n^3}{8(5n^3+39n^2+100n+96)}$. To see the parameters for every $1 \le m \le 10$, we refer once again to the corresponding SAGEMATH code in the previously mentioned github repository.

We end by presenting a conjecture.

Conjecture 14. Let $a_1 \le a_2 \le \cdots \le a_k \le n$ be positive integers and let m denote the cross-degree of the Ehrhart polynomial of the symmetric edge polytope of $K_{a_1,a_2,...,a_k}$. Then the inequalities

$$
\left\lfloor \frac{\sum_{i=1}^k a_i}{2} \right\rfloor \le m + 1 \le \sum_{i=1}^k a_i.
$$

hold. Furthermore, the Ehrhart polynomial of the symmetric edge polytope of the graph $K_{1^k,n}$ interlaces that of $K_{1^{k+1},n}$, where 1^k represents a list k of ones. For $k+n \leq 10$, this has been computationally confirmed.

Acknowledgements

I would like to express my gratitude to my advisor Akihiro Higashitani and to Rodica Dinu for many useful discussions and invaluable advice.

References

- [1] Matthias Beck and Sinai Robins. Computing the continuous discretely. Undergraduate Texts in Mathematics. Integer-point enumeration in polyhedra. Springer, New York, 2007, pp. xviii+226.
- [2] Daniel Bump, Kwok-Kwong Choi, Pär Kurlberg, and Jeffrey Vaaler. "A local Riemann hypothesis. I". In: Math. Z. 233.1 (2000), pp. 1–19.
- [3] S. Fisk. "Polynomials, roots, and interlacing". In: arXiv Mathematics e-prints (2006), math– 0612833.
- [4] Gábor Hegedüs, Akihiro Higashitani, and Alexander Kasprzyk. "Ehrhart polynomial roots of reflexive polytopes". In: Electron. J. Combin. 26.1 (2019), Paper No. 1.38, 27.
- [5] Takayuki Hibi. "Dual polytopes of rational convex polytopes". In: Combinatorica 12.2 (1992), pp. 237–240.
- [6] Akihiro Higashitani, Katharina Jochemko, and Mateusz Michalek. "Arithmetic aspects of symmetric edge polytopes". In: Mathematika 65.3 (2019), pp. 763–784.
- [7] Akihiro Higashitani, Mario Kummer, and Mateusz Michalek. "Interlacing Ehrhart polynomials of reflexive polytopes". In: Selecta Math. (N.S.) 23.4 (2017), pp. 2977–2998.
- [8] Max Kölbl. "On a Conjecture Concerning the Roots of Ehrhart Polynomials of Symmetric Edge Polytopes from Complete Multipartite Graphs". In: arXiv preprint arXiv:2404.02136 (2024).
- [9] Tetsushi Matsui, Akihiro Higashitani, Yuuki Nagazawa, Hidefumi Ohsugi, and Takayuki Hibi. "Roots of Ehrhart polynomials arising from graphs". In: J. Algebraic Combin. 34.4 (2011), pp. 721–749.
- [10] Fernando Rodriguez-Villegas. "On the zeros of certain polynomials". In: Proc. Amer. Math. Soc. 130.8 (2002), pp. 2251–2254.
- [11] The Sage Developers et al. SageMath, version 10.2. 2023. url: <http://www.sagemath.org>.
- [12] Herbert S. Wilf. generatingfunctionology. Third. A K Peters, Ltd., Wellesley, MA, 2006, pp. x+245.