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Abstract

A monotone polytope in Rn is a smooth reflexive polytope. These polytopes arise as the momen-
tum polytopes of monotone symplectic toric manifolds. Ewald’s well-known Conjecture from 1988
states that if P is a monotone n-polytope in Rn then the set Zn ∩ P ∩ −P contains a unimodular
basis of the lattice Zn. McDuff (2009) shows that a stronger property of a monotone polytope, which
she calls star Ewald condition, is closely related to whether the central fiber of the corresponding
monotone symplectic toric manifold is a stem. In 2009 Nill proposed a generalization of Ewald’s
Conjecture to smooth lattice polytopes. In this extended abstract, prepared for the Discrete Math-
ematics Days conference (University of Alcalá, July 3-5, 2024), we summarize the results concerning
these conjectures that we have obtained in our recent article arXiv:2310.10366. We refer to this
article for details and proofs.

1 Introduction

The goal of this extended abstract is to report on the results from our recent paper [4], which solves
some broad cases of a well-known conjecture by G. Ewald from 1988 concerning monotone lattice
polytopes [5], and its more recent generalization to smooth polytopes by B. Nill, from 2009 [13]. Our
motivation comes partially from symplectic geometry, as we will explain, but for brevity we do not
discuss our results in this direction. We refer to the original article [4] for more details, complete
statements, and proofs.

Smooth polytopes in general, and smooth reflexive ones in particular, are very important in algebraic
and symplectic geometry, providing a strong link between “discrete” problems in combinatorics/convex
geometry and “continuous” problems concerning smooth (toric) manifolds. In fact, smooth reflexive
n-dimensional polytopes are also known as monotone n-dimensional polytopes, as they are the images
of 2n-dimensional monotone symplectic toric manifolds under the momentum map M → Rn. We refer
to Charton-Sabatini-Sepe [2], Godinho-Heymann-Sabatini [7] and McDuff [10], for recent works which
discuss monotone polytopes from the perspective of symplectic geometry and to Batyrev [1], Cox-
Little-Schenck [3, Theorem 8.3.4], Franco-Seong [6], Haase-Melnikov [8] and Nill [12] for their relation
to Gorenstein Fano varieties in algebraic geometry.
Let us recall their precise definitions:

Definition 1 (Smooth polytope). An n-dimensional polytope P in Rn is smooth if it satisfies the
following three properties:
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� P is simple: there are precisely n edges meeting a each vertex;

� P is rational: it has rational edge directions (equivalently, the normal vector to the facets are
rational);

� the primitive edge-direction vectors at each vertex of P form a basis of the lattice Zn.

Equivalently, a smooth polytope P in Rn is a polytope whose normal fan is simplicial, rational, and
unimodular.

Definition 2 (Reflexive polytope). A reflexive polytope in Rn is a lattice polytope with the origin in
its interior and whose dual polytope is also a lattice polytope. Equivalently, a lattice polytope in Rn is
reflexive if and only if every facet-defining inequality is of the form uF ·x ⩽ 1, where uF is the primitive
exterior normal vector to the facet.

Definition 3 (Monotone polytope). A polytope in Rn is monotone if it is smooth and reflexive.

There are finitely many monotone polytopes in each dimension n modulo unimodular equivalence
(that is, modulo GL(n,Z) or equivalently AGL(n,Z) transformations). Up to dimension 9 they are
counted in [9, 14] and, as seen in Table 1, the number of monotone polytopes increases rapidly with
the dimension. Figure 1 shows the five possibilities in dimension two.

dimension 1 2 3 4 5 6 7 8 9

monotone polytopes 1 5 18 124 866 7622 72256 749892 8229721

Table 1: Number of monotone polytopes in each dimension up to 9.

Figure 1: The five monotone polygons: monotone triangle, trapezoid, square, pentagon, and hexagon.

We are interested in understanding, both theoretically and computationally, the properties of the
Ewald set of a monotone polytope. This set appears implicitly in the influential 1988 paper by Günter
Ewald [5].

Definition 4 (Ewald set [4, Definition 1.1]). The Ewald set of a polytope P ⊂ Rn is

E(P ) := Zn ∩ P ∩ −P.

Its points are called Ewald points of P .

That is, E(P ) ⊂ Zn consists of the symmetric integral points of P , meaning integral points x ∈ Zn

for which both x ∈ P and −x ∈ P . Our main motivation is the following conjecture:1

Conjecture 5 (Ewald’s Conjecture 1988 [5, Conjecture 2]). Let n ∈ N. If P is an n-dimensional
monotone polytope in Rn then E(P ) contains a unimodular basis of Zn.

1The original formulation of Conjecture 5 refers to dual polytopes, stating that the dual of any monotone polytope
P can be sent into [−1, 1]n, via a unimodular transformation. As pointed out by Øbro [15] this is equivalent to our
formulation, used already by McDuff [11, Section 3.1] and Payne [16, Remark 4.6]. (McDuff and Payne remove the origin
from E(P ) in their definition, but for technical reasons we do not).



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

The conjecture has been verified computationally for n ⩽ 7 by Øbro [15, page 67], but little more is
known about it. Both Payne and McDuff [11, 16] remark that it is not even known whether there is a
monotone polytope with E(P ) = {0}.
Nill [13] proposed the following generalization of Conjecture 5 to smooth polytopes:

Conjecture 6 (General Ewald’s Conjecture, Nill 2009 [13]). Let n ∈ N. If P is an n-dimensional
smooth lattice polytope in Rn with the origin in its interior then E(P ) contains a unimodular basis of
Zn.

This is clearly stronger than Conjecture 5, but it might actually be equivalent; as Nill points out,
Conjecture 5 implies that E(P ) linearly spans Rn for every smooth lattice polytope P with 0 ∈ Int(P ).
(The implication is not on a dimension-by-dimension basis).

2 Three Ewald conditions and their motivation in symplectic geometry

Øbro’s computational verification of Conjecture 5 for n ⩽ 7 shows the following strong version of it: for
every facet F of P , E(P )∩F contains a unimodular basis. This serves as motivation for the definition
we give next. Before that let us introduce the following notation: let P be any polytope and let F and
R be the sets of facets and ridges (that is, faces of codimension two) of P . For a face f of P we denote:

Star(f) =
⋃

f⊂F∈F
F ; star(f) =

⋃
f⊂R∈R

R; Star∗(f) = Star(f) \ star(f).

Definition 7 (Ewald conditions, McDuff [11, Definition 3.5]). Let P be an n-dimensional polytope with
the origin in its interior. We say that:

1. P satisfies the weak Ewald condition if E(P ) contains a unimodular basis of Zn.

2. P satisfies the strong Ewald condition if, for each facet F of P , the set E(P ) ∩ F contains a
unimodular basis of Zn.

3. A face f of P satisfies the star Ewald condition or is star Ewald if there exists λ ∈ E(P ) such
that λ ∈ Star∗(f) and −λ ̸∈ Star(f).

4. P satisfies the star Ewald condition if every face of P satisfies it.

The star Ewald condition is motivated by the following problem in symplectic toric geometry. It is
known that every symplectic toric manifoldM has a particular central toric orbit that is not displaceable
by a Hamiltonian isotopy. A relevant question is whether for a given manifold this central orbit is
the only non-displaceable one. If this happens then the central orbit is called a stem. McDuff relates
displaceability of toric orbits inM to displaceability by probes of points in the corresponding momentum
polytope (a concept that she defines). More precisely, she proves the following:

Theorem 8 (McDuff [11]). 1. Let M be a symplectic toric manifold with momentum polytope P . If
a point u ∈ Int(P ) is displaceable by a probe then its fiber Lu ⊂ M is displaceable by a Hamiltonian
isotopy [11, Lemma 2.4].

2. A monotone polytope P satisfies the star Ewald condition if and only if every point of Int(P )\{0}
is displaceable by a probe [11, Theorem 1.2].

It follows that if the momentum polytope of a monotone symplectic toric manifold satisfies the star
Ewald condition then the central fiber is a stem.
The star Ewald condition is stronger than the weak Ewald condition by [11, Lemma 3.7]. However,

there are 6-dimensional monotone polytopes for which the star Ewald condition fails [11, footnote to p.
134] (see also [4, Proposition 3.11]). Hence, the strong Ewald condition does not imply the star Ewald
condition.
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3 Deeply smooth polytopes satisfy the Ewald conditions

Definition 9 ([4, Definition 4.9]). Let v be a vertex of a lattice smooth polytope P in Rn, and let
u1, . . . , un be the primitive edge vectors at v. The parallelepiped

{v +
n∑

i=1

λiui |λi ∈ [0, 1] ∀i}

is called the corner parallelepiped of P at v.
We say that P is deeply smooth if it contains the corner parallelepiped of P at v for every vertex v

of P . We call P deeply monotone if it is deeply smooth and monotone.

Our first main result in [4] determines a class of polytopes for which the Ewald conditions hold:

Theorem 10 ([4, Theorem 4.14]). Every deeply monotone polytope satisfies the strong and star Ewald
conditions (and, consequently, also the weak condition).

As far as we know this is the first result covering a broad case of Ewald’s Conjecture in arbitrary
dimension. In the following table we have computed how many monotone polytopes fall within this
class for n ⩽ 6.

dimension monotone deeply monotone

3 18 16
4 124 72
5 866 300
6 7622 1352

4 (Monotone) fiber bundles and neat polytopes

Now we look at the Ewald sets of bundles over polytopes.

Definition 11 (Bundle of a polytope). Let n, k ∈ N. Given three polytopes P ⊂ Rk+n, B ⊂ Rk and
Q ⊂ Rn, we say that P is a bundle with base B and fiber Q if the following conditions hold:

1. P is combinatorially equivalent to B ×Q.

2. There is a short exact sequence of linear maps

0 → Rn i−→ Rk+n π−→ Rk → 0

such that π(P ) = B and for every x ∈ B we have that the polytope Qx := π−1(x)∩P is normally
isomorphic to i(Q) (that is, they have the same normal fan).

If P is a monotone bundle with fiber Q and base B then, with the natural identification Q ∼= {0}×Q,
we have that E(Q) ⊂ E(P ). It is natural to ask under what conditions we have the analog property for
the base: that every point in E(B) lifts to E(P ). The answer is the following:

Definition 12 (Neat polytope [4, Definition 2.2]). Let m,n ∈ N. Let P be a smooth lattice polytope
in Rn defined by the inequalities Ax ⩽ c, where A ∈ Zm×n and c ∈ Zm. For each b ∈ Zm we define

Pb := {x ∈ Rn : Ax ⩽ c+ b}

and call it the deformation of P by b. We say that P is neat if whenever Pb and P−b are normally
isomorphic to (i.e., have the same normal fan as) P for a b ∈ Zm we have that

Pb ∩ (−P−b) ∩ Zn ̸= 0;

that is, there is an integer point x ∈ Pb such that −x ∈ P−b.
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One of our results in [4] says that the condition above is precisely what is required of the fiber Q for
the Ewald properties to be preserved under the fiber bundle operation:

Theorem 13 ([4, Corollary 5.10]). For a lattice smooth polytope Q the following properties are equiv-
alent:

1. Q is neat and satisfies the weak (resp. star) Ewald condition.

2. Every lattice smooth bundle P with fiber Q and base [−1, 1] satisfies the weak (resp. star) Ewald
condition.

3. Every lattice smooth bundle P with fiber Q and an arbitrary base B satisfies the weak (resp. star)
Ewald condition whenever B satisfies it.

Corollary 14 ([4, Corollary 2.4]). � If Conjecture 5 holds then every monotone polytope is neat.

� If Conjecture 6 holds then every lattice smooth polytope is neat.

5 The number of Ewald points

We now turn to discuss how many Ewald points a monotone polytope can have. It is easy to show
that for every monotone n-polytope

E(P ) ⊂ E([−1, 1]n) = {−1, 0, 1}n,

where the first inclusion should be understood modulo unimodular equivalence. Hence, no monotone
n-polytope can have more than 3n Ewald points. Somewhat surprisingly, the number of Ewald points
of the monotone cube is asymptotically attained (modulo a factor proportional to

√
n) by the monotone

n-simplex and by any bundle with fiber the monotone simplex and base a segment.
In [4] we computed the number of Ewald points for every monotone polytope up to dimension seven.

The minimum number in each dimension is as follows:

n 1 2 3 4 5 6 7

min |E(P )| 3 7 13 27 59 117 243

These numbers seem to grow exponentially, which supports the claim made in Conjecture 5. In fact,
we have an explicit construction of monotone n-polytopes with |E(P )| growing asymptotically as 32n/3

and which achieves exactly the minimal size for all n ∈ [3, 7]:

Theorem 15 ([4, Corollary 6.7]). For each n ⩾ 3 there is a monotone n-polytope Pn with

|E(Pn)| =


13 · 32k−2 if n = 3k

32k+1 if n = 3k + 1

59 · 32k−2 if n = 3k + 2

Thus, the minimum number of Ewald points of monotone n-polytopes is of order O(32n/3).

6 Nill’s Conjecture: a proof for n = 2 and partial results for higher n

In [4] we prove a strong form of Nill’s Conjecture in dimension 2, in which the hypothesis is relaxed:

Theorem 16 ([4, Corollary 7.3]). If P is a lattice polygon with the origin in its interior and each vertex
of P is at lattice distance one from the line spanned by its two neighboring boundary lattice points, then
E(P ) contains a lattice basis.
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It seems quite challenging to make the type of arguments we use to work in dimensions 3 or higher,
but in [4] we were able to prove the following two partial results.

Definition 17 ([4, Definition 7.4]). Let P be a lattice polytope, F a face of it, and x0 ∈ P . The
maximum distance from x0 to the facets containing F is called distance from x0 to F . We say that x0
is next to F if it is in the interior of P and at distance one from F .

Proposition 18 ([4, Proposition 7.5]). Let P be a deeply smooth n-polytope with the origin in its
interior, and suppose that the origin is next to a certain vertex v. Then, E(P ) contains the lattice basis
consisting of the primitive edge vectors of P at v.

Proposition 19 ([4, Proposition 7.7]). Let P be a smooth 3-polytope with the origin in its interior,
and suppose that the origin is next to a certain edge uv. Then, E(P ) contains a lattice basis.
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[4] L. Crespo, Á. Pelayo, F. Santos, Ewald’s Conjecture and integer points in algebraic and symplectic toric
geometry, preprint, arXiv:2310.10366, 2023.

[5] G. Ewald: On the Classification of Toric Fano Varieties. Discrete Comput. Geom. 3 (1988), 49–54.

[6] S. Franco, R-K Seong: Fano 3-folds, reflexive polytopes and brane brick models. J. High Energ. Phys. 2022,
8 (2022). https://doi.org/10.1007/JHEP08(2022)008

[7] L. Godinho, F. von Heymann, S. Sabatini: 12, 24 and beyond, Advances in Mathematics 319 (2017),
472–521.

[8] C. Haase, I. V. Melnikov: The Reflexive Dimension of a Lattice Polytope, Ann. Comb. 10 (2006), 211–217.

[9] B. Lorenz, A. Paffenholz: Smooth Reflexive Lattice Polytopes. Data available at http://polymake.org/
polytopes/paffenholz/www/fano.html

[10] D. McDuff: The topology of toric symplectic manifolds. Geometry and Topology, 15 (2011)

[11] D. McDuff: Displacing Lagrangian toric fibers via probes, In Low-dimensional and symplectic topology.
Proceedings of the 2009 Georgia International Topology Conference held at the University of Georgia,
Athens, GA, May 18–29, 2009, Proc. Sympos. Pure Math. 82, American Mathematical Society, Providence,
RI, 2011, 131–160.

[12] B. Nill: Gorenstein toric Fano varieties, Manuscripta Math. 116 (2005), 183–210.

[13] B. Nill, personal communication. Conjecture posed, among other places, at the workshop Combinatorial
challenges in toric varieties, American Institute of Mathematics (AIMS), 2009.

[14] M. Øbro: An algorithm for the classification of smooth fano polytopes, preprint, arXiv:0704.0049, 2007.

[15] M. Øbro: Classification of smooth Fano polytopes, Ph. D. thesis, University of Aarhus 2007.
https://pure.au.dk/portal/en/publications/classification-of-smooth-fano-polytopes(781f9160-c4e2-11dc
-88d5-000ea68e967b).html

[16] S. Payne: Frobenius splittings in toric varieties. Algebra and Number Theory 3:1 (2009), 107–118.

https://doi.org/10.48550/arXiv.2307.04198
https://doi.org/10.48550/arXiv.2310.10366
https://doi.org/10.1007/JHEP08(2022)008
http://polymake.org/polytopes/paffenholz/www/fano.html
http://polymake.org/polytopes/paffenholz/www/fano.html
https://doi.org/10.48550/arXiv.0704.0049
https://pure.au.dk/portal/en/publications/classification-of-smooth-fano-polytopes(781f9160-c4e2-11dc-88d5-000ea68e967b).html
https://pure.au.dk/portal/en/publications/classification-of-smooth-fano-polytopes(781f9160-c4e2-11dc-88d5-000ea68e967b).html

	Introduction
	Three Ewald conditions and their motivation in symplectic geometry
	Deeply smooth polytopes satisfy the Ewald conditions
	(Monotone) fiber bundles and neat polytopes
	The number of Ewald points
	Nill's Conjecture: a proof for n=2 and partial results for higher n

