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Martijn Gösgens†1, Lukas Lüchtrath‡2, Elena Magnanini§2, Marc Noy¶3, and Élie de Panafieu ‖4
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Abstract

We investigate the structure of the random graph G(n, p) on n vertices with constant (not
depending on n) connection probability p, conditioned on the rare event that every component is
a clique. We show that a phase transition occurs at p = 1/2, contrary to the dense G(n, p) model.
Our proofs are based on probabilistic methods, generating functions and analytic combinatorics.

1 Introduction

A cluster graph is a graph that is the disjoint union of complete graphs. In this paper, we consider the
Erdős–Rényi (ER) random graph G(n, p) on n vertices with connection probability p, conditioned on
the rare event of being a cluster graph; in our situation p ∈ (0, 1) does not depend on n. We refer to
such a graph as a random cluster graph (RCG). The initial motivation for our study was the observation
that a random cluster graph is a good candidate for a Bayesian prior distribution in the context of
community detection [3], which is the task of partitioning the nodes of a network into communities.

Secondly, it is an interesting probabilistic object due to its rare event character. Forming a cluster
graph is no standard behaviour of the ER random graph and it is fascinating how drastically its
behaviour is effected by this conditioning; an evidence of this fact is that the random graph obtained
after this conditioning overcomes a phase transition in p (that is not present in the dense ER model).

Finally, when ignoring the edges and only considering each cluster as a set, a cluster graph represents
a partition of the whole vertex set. The case p = 1/2 then coincides with the uniform distribution over
set partitions. Uniform set partitions are standard objects in enumerative and probabilistic combina-
torics [4]. Varying the value of p is a natural way of weighting partitions and thus the RCG gives rise
to more general, non-uniform underlying distributions.

After stating our main results, we briefly explain the proof techniques, based on probabilistic methods
and analytic combinatorics [2]. We conclude with a sketch of further results and concluding remarks.
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2 Main results

We let CGn,p denote a random cluster graph with parameters n and p. Our main quantities of interest
are the number of connected components (clusters) in CGn,p, denoted by Cn,p, the number of edges
denoted by Mn,p, and the degree Dn,p chosen independent and uniformly at random from the vertex
set. Our main results concerning these parameters are the following.

Theorem 1 (Number of clusters in the RCG). Consider the random cluster graph CGn,p on n ∈ N
vertices and ER edge probability p ∈ (0, 1) and the number of its clusters Cn,p.

1. If p > 1/2, then
lim
n→∞

P(Cn,p = 1) = 1.

Put differently, CGn,p = Kn with high probability.

2. If p = 1/2, then Cn,p obeys a central limit theorem. That is,

Cn,p − ECn,p√
Var(Cn,p)

−→ N (0, 1),

in distribution, as n→∞. Moreover,

ECn,p ∼
n

log n
and Var(Cn,p) ∼

n

log(n)2
.

3. If p < 1/2, then Cn,p obeys a central limit theorem. That is,

Cn,p − ECn,p√
Var(Cn,p)

−→ N (0, 1),

in distribution, as n→∞. Moreover,

ECn,p ∼
√

log(1− p)− log p

2

n√
log n

and Var(Cn,p) = Θ

(
n

log(n)3/2

)
.

Theorem 2 (Number of edges in the RCG). Consider the random cluster graph CGn,p on n ∈ N
vertices and ER edge probability p ∈ (0, 1) and its number of edges Mn,p.

1. If p > 1/2, then

lim
n→∞

P
(
Mn,p =

(
n

2

))
= 1.

2. If p = 1/2, then Mn,p obeys a central limit theorem. That is,

Mn,1/2 − EMn,1/2√
Var(Mn,1/2)

−→ N (0, 1)

in distribution as n→∞. Moreover,

EMn,1/2 ∼ n log n and Var(Mn,1/2) = Θ(n log(n)2).

3. If p < 1/2, then Mn,p obeys a central limit theorem. That is,

Mn,p − EMn,p√
Var(Mn,p)

−→ N (0, 1)

in distribution as n→∞. Moreover,

EMn,p ∼ n

√
log n

2(log(1− p)− log p)
and Var(Mn,p) = Θ

(
n log(n)3/2

)
.
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Theorem 3 (Degree distribution of the RCG). Consider the random cluster graph CGn,p on n ∈ N
vertices and ER edge probability p ∈ (0, 1) and the degree Dn,p of a uniformly chosen vertex.

1. If p > 1/2, then
lim
n→∞

P(Dn,p = n− 1) = 1.

2. If p = 1/2, then for a Poisson random variable Xn with parameter log n− log log n+o(1), we have

(a) for all z ∈ C,
EzDn,1/2 ∼ EzXn .

That is, the probability generating function of Dn,1/2 and the one of Xn are asymptotically
the same.

(b) Additionally,
lim
n→∞

dTV (Dn,1/2, Xn) = 0.

3. If p < 1/2, then EDn,p = Θ(
√

log n). Moreover, for each λ ∈ [0, 1) there exists a subsequence
(nk)k∈N such that

Dnk,p −

⌊√
2 log nk

log(1− p)− log p
− 1− 1

log(1− p)− log p

⌋
−→ Xλ

in distribution as k →∞, where Xλ is defined by

P(Xλ = d) =

( p
1−p
)(d−λ)2/2∑

d′∈Z
( p
1−p
)(d′−λ)2/2

for all d ∈ Z.

Notice that the fact that Dn,p = Θ(
√

log n)) when p < 1/2 follows directly from Theorem 2. However,
to obtain the distribution full of Dn,p is technically quite involved.

3 Generating functions and analytic combinatorics

By conditioning G(n, p) we loose the independence of the G(n, p) model. To overcome this fact we use
counting techniques. Let F be a class (invariant under isomorphims) of labelled graphs, and let Fn,m
be the graphs in F with n vertices and m edges. We denote by n(G) number of vertices of G, and by
m(G) the number of edges. The exponential generating function (EGF) associated to F is

F (w, z) =
∑
G∈F

wm(G) z
n(G)

n(G)!
,

so that |Fn,m| = n![wmzn]F (w, z). In particular, the EGF of the class of non-empty cliques is

C(w, z) =
∑
n≥1

w(n2)
zn

n!

From now on we use freely the symbolic method, as described in [2]. In particular, since a cluster graph
is a set of cliques, its EGF is exp(uC(w, z)), where the variable u marks components.

It is easy to see that the distribution of random cluster graphs is equal to

P(CGn,p = G) =

(
p

1−p

)m(G)

Bn(p/1−p)
,



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

where the partition function Bn(w) is given by Bn(w) = n![zn]eC(w,z). We notice that Bn(1) is the
n-th Bell number, counting partitions of a set of size n. From here one easily obtains the probability
generating functions (PGF) of the main parameters. Recall that the PGF of an integer-valued non-
negative random variable X is defined as

PGFX(u) = E(eX) =
∑
k≥0

P(X = k)uk.

Proposition 4. Let Mn,p, Cn,p and Dn,p as in Section 2. Set Bn(w) = n![zn]eC(w,z) as before, and
and w = p

1−p . The probability generating functions of these random variables are equal to

PGFMn,p(u) =
Bn(uw)

Bn(w)
,

PGFCn,p(u) =
[zn]euC(w,z)

[zn]eC(w,z)
,

PGFDn,p(u) =
[zn]C1(w, u z)e

C(w,z)

u[zn]C1(w, z)eC(w,z)
.

In order to obtain limit theorems we use the moment generating function (alternatively, the charac-
teristic function E(eitX))

E(etX) = PGFX(et).

Our main tool is Levy’s continuity theorem:

Theorem 5. Let Xn and Y be real valued random variables. If E(etXn) converges pointwise for t in a
neighborhood of 0 to E(etY ), then Xn converges in law to Y .

In particular, if there exists µn and σn such that, pointwise for s in a neighborhood of 0

PGFXn(es/σn) ∼ esµn/σnes2/2 as n→∞

then the renormalized random variables X?
n = Xn−µn

σn
converges to the standard normal distribution.

In order to apply the previous result we need to estimate the corresponding PGFs as n→∞. This
is not an easy task, due mainly to the quadratic exponent

(
n
2

)
in the expression for C(w, z). In fact,

to compute moments, we need more generally to estimate the derivatives of C(w, z) with respect to z.
This is the most technical part of our work, involving Cauchy integrals, saddle-point methods, and the
so-called Hayman admissible functions [2], among other tools.

We observe that the size of the largest block in the p = 1/2 regime is known to be Θ(log n). When
p < 1/2 it should be Θ(

√
log n) due to concentration, but we have not worked out the details.

4 Further results

In this final section, we collect further results on random cluster graphs.

The critical window when p ↓ 1
2 . We know that when p > 1/2 the random cluster gaph CGn,p is

almost surely a single clique. If we let p = p(n) > 1/2, we are interested in the scale at which CGn,p

becomes a single clique.

Proposition 6. Let q ∈ (0, 1) and pn(q) defined by

P(Cn,pn(q) = 1) = q.

Then

pn(q) =
1

2
+

log(n)

2n
+O

(
log log n

n

)
.
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Notice that the precise value of q is not important, in fact it only appears in the error term.

In addition, we show that there exists no ‘almost complete’ regime. For instance, for any sequence
pn ∈ [0, 1] we have

P(Cn,pn(q) = Kn−1 ∪K1)→ 0, as n→∞,

and similarly for Cn,pn(q) = Kn−r ∪ { small cliques }, for fixed r > 0.

The upercritical regime (p > 1
2). In this regime we know that there is only one clique w.h.p.

Our next result is an asymptotic expansion for P(Cn,p = Kn). First notice that if w = p
1−p > 1 then

C(w, z) =
∑

n≥1w
(n2) z

n

n! has zero radius of convergence. Using recent tools for estimating coefficients
of divergent series [1] we show that

Proposition 7.

P(CGn,p = Kn) = 1 +

R−1∑
m=1

w−mnPm(n) +O
(
w−RnnR

)
where Pm(n) are certain polynomials and R ≥ 0 is an integer

The first terms in the expansion are P(CGn,p = Kn) = 1− nw · w−n +O(n2w−2n).

The sparse regime p→ 0. We focus on the case where pn decreases like a monomial pn = n−α+o(1)

for α > 0. We prove that in this regime, the degree distribution concentrates around one or two values.
We first show how α should be chosen to concentrate this distribution around a particular degree d:

Theorem 8. Let d ∈ N ∪ {0} and consider a limiting sequence pn = n
− 2

(d+1)2
+o(1)

. Then

P(Dn = d)→ 1.

Furthermore, for any other d′ ∈ N ∪ {n}, the degree distribution satisfies

P(Dn = d′) = n
−
(

d′−d
d+1

)2
+o(1)

. (1)

In the field of random graphs, the case pn = λ/n is one of the most interesting regimes, known as
the sparse regime. The next lemma shows that in this regime, the degree distribution is concentrated
around two values, rather than one:

Proposition 9. Let λ > 0 and consider the sequence pn ∼ λ/n, then

P(Dn = 0)→
√

4λ+ 1− 1

2λ
, P(Dn = 1)→ 1−

√
4λ+ 1− 1

2λ
,

In particular, the sequence pn ∼ 1/n yields P(Dn = 0)→ ρ−1, where ρ =
√
5+1
2 is the golden ratio.

Conditioning to other classes of graphs. For fixed p ∈ (0, 1), let F (n, p) the random graph
G(n, p) conditioned to be a forest. F (n, p) behaves like a random uniform forest, in the sense that the
number of edges is linear and asymptotically Gaussian, and the number of components is asymptotically
Poisson distributed; only the constants depend on p and thereis no phase transition. The same is true
conditioning on being planar, or related classes of graphs.

In order to get a situation like for random cluster graphs, we believe that one should need to condition
on classes of graphs admitting superlinear number of edges.
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Sampling. How can we sample a random cluster graph CGn,p? Certainly not sampling with rejec-
tion, since the event G(n, p) being a cluster graph is extremely rare. Instead we sample first the size
of one clique and the rest by induction. Let Sn,p be the size of the clique containing vertex 1. Then
we have

Proposition 10.

P(Sn,p = s) =

(
n

s− 1

)(
p

1− p

)(s2) Bn−s(p/(1− p))
Bn(p/(1− p))

,

where Bn(w) is as in Section 3.

Once we sample the size s of the first clique according to the previous distribution, we can sample
recursively on the remaining n − s vertices. Below we show examples of this procedure for (from left
to right) p = 0.25, p = 0.51 and p = 0.53.

Application to community detection. We come finally to the original motivation for our research.
Community detection aims at partitioning the nodes of a network into communities: sets of vertices
that are more strongly connected to each other than to the remainder of the network. A popular
approach is to optimize a quantity known as textmodularity over the set of partitions. A resolution
parameter controls the granularity of the obtained clustering

Given a graph G and cluster graphCG representing a potential partition, and a resolution parame-
ter γ, the modularity is defined as

M(G,CG, γ) =
1

m(G)
(m(G ∩ CG)− γ ·m(CG))

The main goal is to understand modularity better and how to choose γ. For that one can use CGn,p

as a model for a prior distribution. When the communities have sizes close to log n, setting p = 1/2
will likely lead to detecting communities of the desired granularity. But when the communities are
significantly smaller than log n, one should choose p > 1/2. Preliminary inevstigations indicate that
the choice of

pn =
1

2
+

log n

2n
+O

(
log log n

n

)
leads to significantly better community-detection performance.
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