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Abstract

We introduce a new exact algorithm for Multi-objective Linear Integer problems based on the
classical ϵ-constraint method and algebraic test sets computed with Gröbner bases. Our method
takes advantage of test sets 1) to identify which IPs have to be solved in an ϵ-constraint framework
and 2) using reduction with test-sets instead of solving with an optimizer. We show that the
computational results are promising in some families of examples.

1 Introduction

Problems in the real world involve multiple objectives. Due to conflict among these objectives, finding
a feasible solution that simultaneously optimizes all objectives is often impossible. As decision makers
usually need a complete knowledge of the best decisions they can take from those different points of
view, generating the set of efficient solutions (i.e., solutions for which it is impossible to improve the
value of one objective without worsening the value of at least one other objective) is a primary goal in
multi-objective optimization. Multi-objective Integer Programming (MOIP) is the branch that deals
with this kind of problem in the case of integer variables, and the linear case (MOILP) is the one in
which we will concentrate.
Generation methods compute the whole space of Pareto optimal solutions. Among these type of

methods, we have the weighted sum of objectives approach and the ϵ-constraint technique, that generates
a grid in the objective space with ranges between the costs of ideal and nadir points. In ϵ-constraint
methods, for each point in the upper bound set (cf. [9, 5]) a single-objective problem is solved, avoiding
incremental movements through the grid.
In [14, 10, 15, 19, 13] different approaches to apply this ϵ-constrained setting in MOLIP can be

found. Two additional algebraic approaches to MOIP have been presented: the one proposed in [3],
that introduces the so called partial Gröbner bases, and [4] that generalized for several cost functions
the ideas presented in [1] for single-objective problems. Unfortunately these two algebraic proposals
can not manage big examples, to the best of our knowledge.
Our approach is based on the so-called test sets associated to single-objective Linear Integer Pro-

gramming problems (LIP), taking advantage of their special characteristics. A test set is a set of
directions that guides the movement from any feasible point until the optimum of the LIP is reached.
So LIPs are solved by reduction with these test sets, instead of passing them to an optimizer. It is
proved in [18] that Gröbner bases provide the minimal test set for a fixed total ordering compatible
with the linear cost function of the considered program. These test sets do not depend on the right
hand sides (RHS) of the constraints. Interested readers can consult the references [17, 2].
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We will show how our method takes advantage of the features of test sets to manage the ϵ-constraint
setting efficiently: most of the typical redundant computations are circumvented and we only provide
new efficient solutions. Although the computation of Gröbner bases can be a hard task, very sensitive
to the number of variables (cf. [16]) in our experiments the algorithm is fairly competitive in the
unbounded knapsack problem.

This paper is a generalization of a previous work of the authors ([12]) for the biobjective case.

2 Preliminaries

A multi-objective linear integer optimization problem (MOLIP) in standard form can be stated as

min c1(x), . . . , cp(x)
s.t. Ax = b, x ∈ Zn

≥0
(1)

for A ∈ Zm×n, rank(A) = m, b ∈ Zm and c1, . . . , cp with p ≥ 2 linear functions with integer coefficients.
In general there is no feasible point that minimizes all the cost functions, so we are interested in
obtaining the efficient points, that is those feasible points x⋆ such that there is no feasible x with ck(x) ≤
ck(x

⋆) with at least one strict inequality for k = 1, . . . , p. If x⋆ is an efficient point, (c1(x
⋆), . . . , cp(x

⋆))
is a non-dominated (or Pareto) point in the decision space. If we replace the condition ck(x) ≤ ck(x

⋆)
for ck(x) < ck(x

⋆) we obtain weakly efficient points. We will denote X the set of efficient points and
N the set of non-dominated points, the Pareto frontier.

We will assume that the feasible region for problem (1) is finite, so the Pareto frontier N is finite as
well. In this paper we present an algorithm to obtain a set X ⋆ ⊂ X that is a minimal complete set of
efficient points (that is, if xa,xb ∈ X ⋆ then (c1(x

a), . . . , cp(x
a)) ̸= (c1(x

b), . . . , cp(x
b)) and |X ⋆| = |N |,

as in [8])
The ϵ-constraint technique, (see [11]), one of the best known techniques to address problem (1),

manages many problems of the form

min ck(x)
s.t. Ax = b

cj(x) ≤ ϵj , j = 1, . . . , p (j ̸= k)
x ∈ Zn

≥0

(2)

for fixed k = 1, . . . , p and suitable values of ϵj in order to solve Problem (1). Optimal points of
Problem 2 are always weakly efficient. Furthermore we can identify the efficient solutions, as the
following theorem of [8] states:

Theorem 1. A feasible solution x⋆ of a linear MOIP is efficient if and only if there exists a (ϵ1, . . . , ϵp) ∈
Rp such that x⋆ is an optimal solution of the corresponding problems (2) for k = 1, . . . , p.

Thus we have families of IPs for which only the right hand side (RHS) varies, so it is natural to
consider at this point one algebraic tool called the test set of a given LIP. Given the family of LIPs in
standard form (no inequalities)

min c(x)
s.t. Ax = b

x ∈ Zn
≥0

(3)

for A ∈ Zm×n, rank(A) = m, b ∈ Zm and c a linear function with coefficients in Zn, in general there
is not only one optimal point but several ones with the same cost. We can refine the cost function
considering a total order ≺c that first compares two points by the cost c and breaks ties according to
a chosen term order ≺ (see [6]). If we consider problem (3) replacing the cost function by ≺c, it does
not affect the optimal value but, as it is a total order, it insures a unique optimum.
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Definition 2. A test set with respect to ≺c of the family of problems (3) for fixed A is a set T ⊂ {t ∈
Zn : At = 0} valid for any RHS, with the following properties:

1. For any feasible, non-optimal solution x of (3) for some b, there exists t ∈ T such that x− t is
feasible and x− t ≺c x.

2. Given the optimal solution x⋆ of (3) for some b, we have that x⋆−t is not feasible for any t ∈ T .

There exists a test set for any given LIP that can be computed with Gröbner bases with respect to ≺c

([18]). The existence of test sets for an LIP implies a straightforward algorithm to find its optimum: we
start from any feasible point and subtract elements of the testset as long as we obtain feasible points.
We will refer to this process as reduction of a feasible point with the test set.

So given the family of problems (2) for a fixed k, using test sets to solve them requires only 1) the
computation of one test set for all the problems and 2) the reduction of a feasible point of each problem
with the test set. It is very important to underline that, if the test set is available, the reduction process
is very often faster than passing the IP to an optimizer. In addition, we will see that test sets guide us
during the task of choosing which values of ϵj produce new efficient solutions, avoiding many redundant
LIPs to be solved. At last, in contrast with several methods that compute first weakly efficient solutions
and filter them in a second step, we will see that using a suitable total order we obtain efficient points
directly.

3 Characterization of efficient points using test sets

To solve the problem (1) we will adopt a recursive scheme. We will obtain a minimal set of efficient
solution of the problems

min c1(x), . . . , ci(x)
s.t. Ax = b, x ∈ Zn

≥0
(4)

for i = 2, . . . , p and for this purpose we will use the ϵ-constraint method and manage the problems
Pi(ϵ1, . . . , ϵi−1) (in standard form)

min ci(x)
s.t. Ax = b

c1(x) + r1 = ϵ1,
...
ci−1(x) + ri = ϵi−1,
x ∈ Zn

≥0,

(5)

for i = 1, . . . , p and (ϵ1, . . . , ϵi−1) ∈ Ri−1.

For a given i, 2 ≤ i ≤ p, let us note ≺ĉi the total order that first compares two feasible points with
respect to ci and to break ties uses successively c1, . . . , ci−1, ci+1, . . . , cp and finally a chosen term order
≺ if it were necessary. We will denote Tî ⊂ Zn+(i−1) the test-set for problem (5) with respect to the
total order ≺ĉi (the elements of this test set have i−1 additional variables because of the slack variables
added to the problem to put it in standard form).
The following result provides a characterization of the efficient points in this context.

Theorem 3. A feasible point (x∗,0) ∈ Zn+(p−1) is the optimal solution of Pp(c1(x
⋆), . . . , cp−1(x

⋆))
with respect to the total order ≺ĉp if and only if x⋆ is an efficient solution of (4) and among the ones
with costs (c1(x

⋆), . . . , cp−1(x
⋆)) is the smallest one with respect to ≺ĉp

Corollary 4. If (x∗, t) ∈ Zn+(p−1) con t ≥ 0 is the optimal solution of Pp(ϵ) for some ϵ ∈ Zn+(p−1)

with respect to ≺ĉp then x⋆ is an efficient solution of (1).
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Theorem 3 provides in particular a way to obtain the first point of our set of representatives of the
non-dominated set of points of problem (1), the one with minimum c1:

Corollary 5. [8, Lemma 5.2.] Let x⋆
1 be the optimal solution of

min{c1(x) : Ax = b,x ∈ Zn
≥0}

with respect to the ordering ≺ĉ1. Then x⋆
1 is an efficient solution of (1) with minimum cost c1.

4 Recursive construction of a minimal set of efficient solutions

Given the set of efficient solutions X , let us denote X ⋆ ⊂ X the minimal complete set of efficient points
whose elements have the property of being the smallest ones with respect to ≺ĉp among the points that
have the same costs. So by definition there is one efficient solution corresponding to each element in
the Pareto frontier N . The next result show how the elements X ⋆ can be obtained:

Theorem 6. Let x ∈ X ⋆. Then one of the following statements is true:

1. c′(x∗) = (c1(x
∗), . . . , cp−1(x

⋆)) belongs to the Pareto frontier of problem (4) for i = p− 1

2. There exists a solution x′ of Pp(ϵ
′) for some ϵ′ ∈ Rn+(p−1) such that ci(x

′) ≤ ci(x
⋆) for 1 ≤ i ≤

p−1 with at least an strict inequality and there exists (t, r) ∈ Tp such that t ≤ x⋆ and r ≥ 0, r ̸= 0
(componentwise) and r = c′(x⋆)− c′(x′).

The theorem above assures, by induction, that the elements of X ⋆ come from solving problem (4) for
some i = 1, . . . , p− 1 (that is, belong to the solution of the problem taking into account only the first i
cost functions) or from reducing elements of the form (x⋆, r) for some x⋆ efficient solution of problem
(4) for some i = 1, . . . , p − 1 and some r that produce an element (x⋆, r) that is reducible and whose
reduction with respect to Tp. Its reduction produces a new element in X ⋆.

Theorem 7. Let x∗ be an efficient solution of

min c1(x), . . . , ci(x)
s.t. Ax = b x ∈ Zn

≥0
(6)

with respect to ⪯ĉi for some i, 1 ≤ i ≤ p− 1 then x⋆ is efficient for

min c1(x), . . . , ci(x), ci+1(x)
s.t. Ax = b x ∈ Zn

≥0
(7)

with respect to ⪯ĉi+1
.
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Algorithm 1 Algorithm to obtain a minimal set of efficient solutions of a MOILP with p objetives
(p ≥ 2)

Require: vector of cost functions (c1, c2, . . . , cp), A and b of problem (1)
Compute T1
e1 ← the solution of min{c1(x) s.t. Ax = b,x ∈ Zn

≥0} with respect to ≺ĉ1

X ′ ← {e1}
P ← {e1}
for i = 2, . . . , p do
Compute Ti
for all x ∈ P do
P := P \ {x}
Compute G̃x

if G̃x ̸= ∅ then
Gjumps ← {(x, r) such that there exists (t, r) ∈ G̃x}
for all (x, r) ∈ Gjumps do
(y, t)← optimal solution of Pi(ϵ1, . . . , ϵi−1) with respect to ≺ĉi and initial feasible solution
(x, r).
if y /∈ X ′ then
X ′ ← X ′ ∪ {y}
P ← P ∪ {y}

end if
end for

end if
end for

end for
OUPUT: A minimal set of efficient solutions with respect to ≺ĉp

Algorithm 1 takes into account our previous results and produce a minimal set of efficient points for
a given problem (1). For a given x and a given test-set Ti we will denote Gx = {(t, r) ∈ T : t ≤ x, r ≥
0, t ̸= 0} and G̃x the subset of elements (t, r) of Gx with their last i− 1 components non comparable.

5 Conclusions

We have introduced a new exact algorithm to obtain a minimal set of efficient points for MOLIPs. It
is based on the classical ϵ-constraint method and test sets for a family of IPs computed via Gröbner
bases with respect to an order that, properly chosen, guides us in the process of obtaining only efficient
solutions and avoiding most of unnecessary computations.

Computational experiments are promising for unbounded knapsack problems (that could be hard
to treat with the usual techniques of the binary case). We have have been able to solve problems
up to 100 variables for 3 objectives and 75 variables for 4 and 5 objectives (as far as we know the
biggest examples proposed in the literature). We have treated too some examples of multi-objective
redundancy allocation problems (as in [7]) with excellent results.

References

[1] D Bertsimas, G Perakis, and S Tayur. A new algebraic geometry algorithm for integer program-
ming. Management Science, 46(7):999–1008, 2000.

[2] D. Bertsimas and R. Weismantel. Optimization over integers. Dynamic ideas, 2005.



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024
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