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Abstract

In this work we present how to use test sets of Linear Integer Programming Problems to apply
the classical Weighted Sum Method in bi-objective optimization. Although this method does not
compute in general the complete set of non-dominated solutions, is one of the most widely used due
to its simplicity.

The interest of using test sets computed with Gröbner bases is that these combinatorial tools
compute exactly which weights should be considered to obtain the complete set of supported non-
dominated solutions. Our approach can be extended to some problems in Multi-objective Non-Linear
Integer Programming as well.

1 Preliminaries

1.1 Multi-objective optimization

Most real-life decision-making activities require more than one objective to be considered. These
objectives can be conflicting, and thus some trade-offs are needed. As a result, a set of Pareto-optimal
solutions, rather than a single solution, must be found.
A general multi-objective optimization problem can be written as

min f1(x), . . . , fr(x)
s.t. gj(x) ≤ 0, j = 1, . . . , J

hk(x) = 0, k = 1, . . . ,K
x ∈ Rd

(1)

The space of the vectors of decision variables x is called the search space. The space formed by
all the possible values of objective functions is called the objective space. Since in general there is
no feasible point that minimises all the cost functions, we are interested in the efficient points: those
feasible points x⋆ such that there is no feasible x with fi(x) ≤ fi(x

⋆) with at least one strict inequality
for i = 1, . . . , r. If x⋆ is an efficient point, (f1(x

⋆), . . . , fr(x
⋆)) is a non-dominated point in the objective

space. The set of all non-dominated points is usually called the Pareto front.
The Weighted Sum Method (cf. [4]) combines all the multi-objective functions into a single objective

function w1f1 + · · ·+ wrfr with
∑r

i=1wi = 1 to express the preferences of the decision maker. So the
aim of this approach is to describe (as accurate as possible) the set of of solutions of the following
family of single objective problems:
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min w1f1(x) + · · ·+ wrfr(x)
s.t. gj(x) ≤ 0, j = 1, . . . , J

hk(x) = 0, k = 1, . . . ,K
x ∈ Rd

(2)

It is well known that this method only produce the complete set of non-dominated solutions if the
Pareto front is convex and it is not always clear how to select properly the wi. The solutions obtained
by this method are called supported points.

1.2 Bi-objective linear integer case

In this work we treat the bi-objective linear case for which objectives and constraints are linear functions
and in which the variables are integer, that is

min ct1x, c
t
2x

s.t. Ax = b
x ∈ Zn

≥0,
(3)

for b ∈ Zm, A ∈ Zm×n. We present a combinatorial description of the classical Weighted Sum method
for our problem considering the family

min w1c
t
1x+ w2c

t
2x

s.t. Ax = b
x ∈ Zn

≥0,
(4)

for w1 + w2 = 1, using test sets computed via Gröbner bases. We will show how test sets provides the
exact values of wi that has to be considered to not drop any supported point.
In [8] an algebraic approach also based in test sets is proposed to apply the ϵ-constraint method,

another classical approach that solves a family of several problems of only one objective to manage the
multi-objective case. Tests sets in that case shows exactly which single objective problems are required
to be solved to obtain all non-dominated solutions without redundant calculations.

1.3 Tests sets in linear integer programming

Given a linear integer programming problem with a single objective function

min ctx
s.t. Ax = b

x ∈ Zd
≥0

(5)

a fundamental tool is the test set associated to c and A:

Definition 1. A test set of Problem 5 is a set T ⊂ ker(A) ⊂ Zd such that: 1) for any feasible solution
x of Problem 5 that is not optimal, there exists t ∈ T such that x − t is feasible and ct(x − t) < ctx,
and 2) given the optimal solution x⋆ of Problem 5, x− t is not feasible for any t ∈ T .

Test sets produced a natural way of solving Problem 5: starting from a feasible point, subtract
elements of the test set as long as it is possible. Test sets can be obtained computing a Gröbner basis
of the ideal associated to Problem 5 (cf. [3]) with respect to a suitable monomial ordering that takes
into account the cost function c and codifying the exponents of the polynomials in vectors (see [11]) in
which positive components correspond to the term leader of the polynomial. Test sets can be computed
for a fixed b or, usually, valid for any possible b.(see[?]

Up to our knowledge, the best implementation to compute test sets is 4ti2 ([5]). Test sets been
introduced in [12] to solve nonlinear integer problems, and in [2], [6] or [7] for real size cases of Portfolio
Selection and Reliability Redundancy Allocation problems.
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2 The weighted sum method with test sets

Using test sets computed with Gröbner bases it is possible to compute exactly which values of w1, w2

produce new potential efficient points. This is possible because the Gröbner bases behind the test sets
have the following property: if the exponents with respect to an ordering ≺2 of the polynomials of a
given base for another ordering ≺1 are the same, the bases with respect to both orderings are the same
one (cf. [3]).

Example 2. Let us consider an illustrative example to get the general idea of our procedure. Given
the bi-objective assignment problem

min ct1x, c
t
2x

s.t.
∑3

j=1 xij = 1, 1 ≤ i ≤ 3∑3
i=1 xij = 1, 1 ≤ j ≤ 3,

xij ∈ {0, 1},

(6)

with costs c1 = (12, 12, 8, 15, 9, 1, 16, 4, 3) and c2 = (6, 4, 11, 10, 19, 18, 16, 10, 17), a test set1 for the
problem with objective c1, that is (1− w)c1 + wc2 with w = 0, is

T = { (−1, 0, 1, 0, 0, 0, 1, 0,−1), (−1, 0, 1, 1, 0,−1, 0, 0, 0), (−1, 1, 0, 0, 0, 0, 1,−1, 0),
(−1, 1, 0, 1,−1, 0, 0, 0, 0), (0,−1, 1, 0, 1,−1, 0, 0, 0), (0, 0, 0,−1, 1, 0, 1,−1, 0),
(0, 0, 0, 0, 1,−1, 0,−1, 1), (0, 0, 0, 1, 0,−1,−1, 0, 1), (0, 1,−1, 0, 0, 0, 0,−1, 1)}

and the optimum solution of the problem is P0 = (1, 0, 0, 0, 0, 1, 0, 1, 0). The combination of costs
(1− w)c1 + wc2 is

(−6w + 12,−8w + 12, 3w + 8,−5w + 15, 10w + 9, 17w + 1, 16, 6w + 4, 14w + 3)

The cost of the first element (1, 0, 1, 0, 0, 0, 1, 0, 1) for this combination is

−(−6w + 12) + (3w + 8) + 16− (14w + 3) = −5w + 9,

so for every w ∈ [0, 1] the exponent (corresponding to the leading term of the polynomials in the Gröbner
basis) does not change: the cost is always positive, that is, the cost of positive components always surpass
the cost of negative components and the exponent of the element does not change. On the contrary, if
the element (0, 0, 0, 1, 0, 1, 1, 0, 1) is considered, its cost is

(−5w + 15)− (17w + 1)− (16) + (14w + 3) = −8w + 1.

For any w ∈ [0, 1/8) the exponent of this element does not change, but for w = 1/8 (and with respect
to a monomial ordering that uses namely c2 to break ties) the exponent does change. Checking which
are the w for which the exponent changes for every element in T , and considering the smallest one w0,
we can assure that

• T will be the test set of Problem 6 for w ∈ [0, w0). In this case w0 is precisely 1/8.

• A computation of the test set to solve Problem 6 for w = 1/8 will provide a new test set (and,
eventually, a new optimum solution).

The general procedure, given some c1, c2 the matrix A of the constraints and a feasible point Pfeas

(that implies the value of b) is Algorithm 2. First a test set T corresponding to cost c1 and the
associated optimum solution are computed. Then consider all the w ∈ (0, 1] that produce changes of
exponent in the elements of T , and take the smallest one w0 for which the test set of the minimisation
problem with cost (1− w)c1 + wc2 is different to T . Repeat this process until w0 turns out to be 1.

1We have implemented an ordering that takes into account c1 first, and break ties with c2. In 4ti2 this option is
possible introducing matrices of costs, with each row corresponding to a different cost.
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Algorithm 1 Weighted Sum with Test Sets

0: input: c1, c2, A,b, Pfeas of Problem 3
0: output: Set of all supported points
0: c1 := c1
0: SupPoints := ∅
0: while c1 ̸= c2 do
0: T = TestSet(c1, A) {T does not depend on b}
0: P := Solve(Pfeas, T )
0: SupPoints := SupPoints ∪{P}. {P can be superfluous}
0: w0 = mint∈T {w ∈ (0, 1]|w changes exponent of t} {w0 can be equal to 1}
0: c1 := (1− w0)c1 + w0c2
0: end while
0: T = TestSet(c2, A)
0: P := Solve(Pfeas, T )
0: SupPoints := SupPoints ∪{P}. {Optimum for c2 computed, just in case}
0: return SupPoints =0

The algorithm is correct because the number of different Gröbner basis for a given ideal is finite (cf.
[9]).
Our method describes exactly which wi are necessary to be selected because they produce a different

test set, so potentially a new optimal point. Nevertheless, two different test sets can lead to the same
optimal point.

Example 3. In Problem 6, when the test set is computed for w = 1/8 a new test set is obtained:

T ′ = { (−1, 0, 1, 0, 0, 0, 1, 0,−1), (−1, 0, 1, 1, 0,−1, 0, 0, 0), (−1, 1, 0, 0, 0, 0, 1,−1, 0),
(−1, 1, 0, 1,−1, 0, 0, 0, 0), (0,−1, 1, 0, 1,−1, 0, 0, 0), (0, 0, 0,−1, 0, 1, 1, 0,−1),
(0, 0, 0,−1, 1, 0, 1,−1, 0), (0, 0, 0, 0, 1,−1, 0,−1, 1), (0, 1,−1, 0, 0, 0, 0,−1, 1)}

However, the optimum point is the same one.

3 Applications to bi-objective non-linear integer programming

As it is explained in [12] test sets can be exploided to solve problems of type

min ctx
s.t. Ax = b

x ∈ Ω
x ∈ Zn

≥0,

(7)

for Ω described with non-linear (computable) conditions. The strategy is to calculate the linear opti-
mum for the problem without the non-linear constraints and walking back (adding elements of the test
set that worsens the values of the cost function) until points in Ω are reached. The best point obtained
into Ω is the optimum of Problem 7.

Instead of c a family of costs (1−w)c1 +wc2 can be handled: with Algorithm 2 we can achieve the
values of w that produce different linear optima for the whole family. Only walking back from them is
required to obtain all supported points for the bi-objective counterpart of Problem 7. We present how
to apply this framework to a thoroughly studied example in the literature.

In [1] a method to treat a family of three-objective redundancy allocation problem is presented. The
functions to be optimised are the cost, weight and reliability of the system. We propose an alternative
way to handle the case example (section 3) of three subsystems. We instead solve the bi-objective
problem with respect to cost and weight and add the reliability fR as an extra constraint (for which
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we ask a convenient value ρ), as in [12]. Additionally, we have rearranged the weights (coefficients of
f2) to obtain more supported solutions.
We consider the resulting problem of the form

min f1, f2
s.t. 1 ≤

∑3
i=1

∑mi
j=1 xij ≤ 7

fR(x) ≤ ρ
xij ∈ Z14

≥0

(8)

with
f1 = 4x11 + 6x12 + 7x13 + 8x14 + 9x15+

+3x21 + 4x22 + 5x23 + 7x24+
+2x13 + 4x32 + 4x33 + 6x34 + 8x35,

f2 = 9x11 + 6x12 + 6x13 + 3x14 + 2x15+
+12x21 + 3x22 + 2x23 + 2x24+
+10x13 + 6x32 + 4x33 + 3x34 + 2x35

and m1 = m3 = 5,m2 = 4.
Applying Algorithn 2 to this problem produces the consecutive values of w0 = 1/3, 1/2, 1/2 and 3/4,

and the following list of 6 optimal points of the linear part:

(0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0),
(1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)

For each of these optimal points we solve the non-linear corresponding problems with the strategy
of walkback (as it is explained in [6]) for the values of ρ for which we are interested in, and obtain
a suitable subset of the Pareto front of the non-linear Problem 8. For ρ = 0.99 the complete set of
supported non-dominated points obtained is

{(0, 0, 0, 0, 5, 0, 1, 3, 0, 0, 0, 0, 0, 5),
(1, 1, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0),
(2, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0)}

We consider that the approach of solving this problem for different values of ρ is more convenient
that the one proposed in [1] in which 6112 non-dominated points are reported. The size of this set is
unmanageable for a decision maker.

4 Conclusions

We have presented an algebraic description of the weighted sum method to compute the supported
non-dominated solutions of a bi-objective linear integer programming problem. A generalization to
any number of objective functions is a work in progress and requires a complete understanding of how
to calculate the subset of the Gröbner fan of the ideal corresponding to the the combinations of the
costs with any number of parameters.
In addition we have presented how to extend the algebraic weighted sum method to some multi-

objective non-linear integer problems, specifically to a widely studied example of redundancy allocation
problem.
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