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1 Introduction

A major challenge in the theory of neural networks is to precisely characterize the functions they can
represent [2]. This topic differs from universal approximation theorems [1], which aim to guarantee
the existence of neural networks that approximate functions well. Although it is well known that
feedforward neural networks with ReLU activation are continuous piecewise linear (CPWL) functions
[2, 3], the minimum number of layers required to represent any CPWL function remains an open
question.

A potential way to solve this problem is through the concept of depth of a polytope given by neural
networks.

Definition 1. The collection of polytope neural networks with depth m is defined as

∆(m) =

{
p∑

i=1

conv{Pi, Qi}
∣∣∣ Pi, Qi ∈ ∆(m− 1)

}
,

where the sum corresponds to Minkowski sum and conv{Pi, Qi} means the convex hull of Pi ∪Qi. The
base set ∆(0) represents the polytopes consisting of a single point.

Definition 2. A polytope P is said to have (minimal) depth m, denoted as d(P ) = m, if P ∈ ∆(m)
and P ̸∈ ∆(m− 1).

Neural networks are traditionally named after their building object or operation. For example, ReLU
neural networks use ReLU activation, and convolutional neural networks [3] are based on convolution
kernels. In a similar manner, the naming of polytope neural networks is derived from their underlying
object.

The connection between ReLU and polytope neural networks can be found through tropical geometry
[10]. Any ReLU network can be decomposed into the difference of two convex CPWL functions,
which can be mapped to polytopes via Newton polytopes. In particular, understanding the functions
representable by ReLU neural networks of a given depth is equivalent to studying which polytopes can
be constructed at that depth, as defined in Definition 1.

The open question for ReLU networks reduces to whether the function max{x1, x2, . . . , xn, 0} can
be represented with minimal depth ⌈log2(n + 1)⌉. This question can be rephrased in the language of
polytopes as follows.

Conjecture 3 (Hertrich et al. [6]). Let S be an n-simplex, then d(S + P ) = ⌈log2(n + 1)⌉, for any
polytope P with d(P ) < ⌈log2(n+ 1)⌉.
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Our understanding of the sets ∆(m), beyond the case of m = 1, which corresponds to the set of
zonotopes, remains limited. The conjecture is known to be true for n = 2 and n = 3 [2, 7]. However,
to this date, the only contribution addressing Conjecture 3 for any n has been made by Haase et al.
[5], who have proven it for lattice polytopes. Their approach involved relating depth with subdivision
and volume properties of Minkowski sums and convex hulls.
The goal of this work is to advance our knowledge of polytope neural networks relevant to Conjec-

ture 3. We show basic depth properties from Minkowski sums, convex hulls, number of vertices, faces,
affine transformations, and indecomposable polytopes. More significantly, key findings include depth
characterization of polygons; identification of polytopes with an increasing number of vertices, exhibit-
ing small depth and others with arbitrary large depth; and most importantly, depth computation for
simplices.
Acknowledgements. I extend my gratitude to Ansgar Freyer for providing the proof of Theorem

12 for n = 4, which was expanded to the general case with minor adjustments. I also thank Francisco
Santos for his hospitality during my visits to the University of Cantabria, and for valuable discussions
on this work, including presentation enhancements and the ideation and proof of Theorem 14.

2 Basic properties

To develop the main results in Section 3, it is necessary to establish some basic depth properties for
polytopes. We assume Rn as the ambient space throughout.
We begin by computing depth bounds for Minkowski sums and convex hulls, which are the funda-

mental operations in Definition 1.

Proposition 4. Let P1, P2 be polytopes with d(Pi) ≤ mi. Then, d(P1 + P2) ≤ max{m1,m2} and
d(conv{P1, P2}) ≤ max{m1,m2}+ 1.

Proof. If d(Pi) ≤ mi, then Pi ∈ ∆(max{m1,m2}). This implies conv{P1, P2} ∈ ∆(max{m1,m2} + 1)
by definition, and therefore d(conv{P1, P2}) ≤ max{m1,m2}+ 1.
Also by definition, consider the decomposition

Pi =

qi∑
j=1

conv{Qj,i, Rj,i},

where Qj,i, Rj,i ∈ ∆(max{m1,m2} − 1) for all i = 1, 2 and j = 1, . . . , qi. Consequently, d(P1 + P2) ≤
max{m1,m2} as

P1 + P2 =

q1∑
j=1

conv{Qj,1, Rj,1}+
q2∑
j=1

conv{Qj,2, Rj,2} ∈ ∆(max{m1,m2}).

Now, using Proposition 4 we can bound the depth of a polytope by its vertices.

Proposition 5. If a polytope P is given by its vertices P = conv{x1, . . . , xp}, then d(P ) ≤ ⌈log2 p⌉.

Proof. By definition, d({x1}) = 0 and d(conv{x1, x2}) = 1. Supposing the statement is true up to
p− 1, consider a polytope P = conv{x1, . . . , xp} and decompose it as

P = conv{conv{x1, . . . , xk}, conv{xk+1, . . . , xp}},

where k is the largest integer power of 2 such that k < p. Using the induction hypothesis, we obtain
that d(conv{x1, . . . , xk}) ≤ log2 k and d(conv{xk+1, . . . , xp}) ≤ ⌈log2(p−k)⌉. Therefore, by Proposition
4, we conclude d(P ) ≤ log2 k + 1 = ⌈log2 p⌉.

Other basic properties concerns the depth of a polytope in relation to its faces and affine transfor-
mations.
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Proposition 6. Any face F ̸= ∅ of a polytope P satisfies d(F ) ≤ d(P ).

Proof. For d(P ) = 0, there is nothing to prove. If d(P ) = 1, then P is a zonotope, and any face F is
also a zonotope; therefore, d(F ) ≤ 1. For the sake of induction, suppose the statement is true up to
depth m− 1 and consider d(P ) = m. By definition,

P =

q∑
i=1

conv{Pi, Qi}, Pi, Qi ∈ ∆(m− 1).

A face F of P is then expressed as

F =

q∑
i=1

conv{Fi, Gi},

where Fi, Gi are faces of Pi, Qi respectively. By the induction hypothesis, d(Fi) ≤ m− 1 and d(Gi) ≤
m− 1, and consequently Fi, Gi ∈ ∆(m− 1) for all i. Therefore, F ∈ ∆(m) and d(F ) ≤ d(P ).

Proposition 7. Let P be a polytope in Rn and φ : Rn → A be an affine transformation, where A is
an affine subspace of Rd. Then, d(φ(P )) ≤ d(P ), with equality holding if φ is invertible.

Proof. Let φ(x) = Mx + c, where M ∈ Rd×n and c ∈ Rd. For the case d(P ) = 0 consider P = {a},
then φ(P ) = {Ma + c}, which implies d(φ(P )) = 0. For the purpose of induction, assume that the
statement, in the general case, is true up to m− 1. Let d(P ) = m and express it as

P =

p∑
i=1

conv{Pi, Qi}, Pi, Qi ∈ ∆(m− 1).

Then,

φ(P ) = φ

(
p∑

i=1

conv{Pi, Qi}

)
= M

p∑
i=1

conv{Pi, Qi}+ c =

p∑
i=1

conv{MPi,MQi}+ {c}.

Utilizing the induction hypothesis and Proposition 4, we deduce that d(φ(P )) ≤ m. In the case of φ
being invertible, we get

d(P ) = d(φ−1(φ(P ))) ≤ d(φ(P )) ≤ d(P ).

A class of polytopes in which computing their depth may be easier is that of indecomposable poly-
topes. Two polytopes, P and Q, are said to be positively homothetic, if P = λQ + w for some λ > 0
and w ∈ Rn. A polytope P is said to be indecomposable if any decomposition P =

∑k
i=1 Pi is only

possible when Pi is positively homothetic to P for all i = 1, . . . , k.

Proposition 8. If P is an indecomposable polytope, then there exist polytopes P1, P2 such that P =
conv{P1, P2} and d(P ) = max{d(P1), d(P2)}+ 1.

Proof. By definition, there exist Pi, Qi ∈ ∆(d(P )− 1), i = 1, . . . , k, such that

P =

k∑
i=1

conv{Pi, Qi},

where an index j necessarily satisfies max{d(Pj), d(Qj)} + 1 = d(P ). As P is indecomposable, there
exist λj > 0 and wj ∈ Rn such that P = λjconv{Pj , Qj}+ wj = conv{λjPj + wj , λjQj + wj}, and by
Proposition 7,

d(P ) = max{d(Pj), d(Qj)}+ 1 = max{d(λjPj + wj), d(λjQj + wj}) + 1.
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3 Main results

We first present a full depth characterization for polygons.

Theorem 9. Any polygon P satisfies d(P ) ≤ 2.

Proof. Let P be a polygon. If P is a zonotope, then d(P ) = 1; whereas, if P is a triangle, then d(P ) = 2
due to Proposition 5 and the fact that P is not a zonotope. Suppose that P is neither a zonotope nor
a triangle; then, it can be decomposed as P =

∑k
i=1 Pi, where Pi is a zonotope or a triangle for all

i = 1, . . . , k [4]. Therefore, d(P ) ≤ 2 by Proposition 4.

From Theorem 9, we deduce that a polygon can have depth 0 if it consists of a single point, depth
1 if it is a zonotope, or depth 2 otherwise.

We continue with zonotopes and (bi)pyramids, as example of polytopes which can have large number
of vertices and small depth.

Proposition 10. Any n-(bi)pyramid, n ≥ 3, with a zonotope base has depth 2.

Proof. A 3-(bi)pyramid P includes triangular facets, therefore it is not a zonotope, and thus d(P ) ≥ 2.
Assuming that up to n− 1, (bi)pyramids has depth greater than or equal to 2, let’s consider a facet F
of an n-(bi)pyramid P containing an/the apex. Since F is a pyramid of dimension n−1, then d(F ) ≥ 2
based on the induction hypothesis. Consequently, d(P ) ≥ d(F ) ≥ 2 by Proposition 6.

Now, consider P an arbitrary n-(bi)pyramid with a zonotope base Z and apex (or apices) A. Then,
2 ≤ d(P ) = d(conv{Z, conv A}) ≤ 2 according to Proposition 4.

Theorem 11. Let vp = 2
∑n−1

i=0

(
p−1
i

)
for p ≥ n. For each p satisfying this condition, there exist

polytopes with vp vertices and depth 1, and also with vp + 1 vertices and depth 2.

Proof. Let gi = [0, bi], where i = 1, . . . , p, represent line segments with b1, . . . , bp denoting points in Rn

in general position. The zonotope Z =
∑p

i=1 gi has depth 1 and has vp vertices given the generators are
in general position [9]. Lifting Z to Rn+1 by adding 0 to the new coordinate allows the construction of
a pyramid P with Z as its base. Therefore, d(P ) = 2 by Proposition 10.

In Theorem 11, we constructed two families of polytopes, zonotopes and pyramids, which exhibit an
increasing number of vertices and possess depths of 1 and 2, respectively. This indicates that depth
bounds from Proposition 5 may be far from the true depth of a polytope. However, this bound based
on vertices cannot be further refined, as it is tight for simplices.

We next present two approaches for calculating the depth of simplices. The first approach leverages
the face structure and indecomposability of simplices, while the second approach results from a more
general finding regarding polytopes containing complete subgraphs.

Theorem 12. Any n-simplex has minimal depth ⌈log2(n+ 1)⌉.

Proof. We know that 2-simplices have depth 2. Let’s make the assumption that, for k = 3, . . . , n− 1,
k-simplices have depth ⌈log2(k + 1)⌉ and consider an n-simplex P . Given that P is indecomposable
[4], we can employ Proposition 8 to get a pair of polytopes P1, P2 such that P = conv{P1, P2} and
max{d(P1), d(P2)} = d(P )− 1.

Without loss of generality, one of the Pi, let’s say P1, contains at least q = ⌈n+1
2 ⌉ points that are

vertices of P . Consider F = conv{x1, . . . , xq}, where xi, i = 1, . . . , q are vertices of P contained in P1.
Then, F is a (q − 1)-simplex and a face of P . Let H be a supporting hyperplane of P associated with
F . From

F = H ∩ F ⊂ H ∩ P1 ⊂ H ∩ P = F,
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we deduce that F is also a face of P1. By the induction hypothesis,

d(F ) =

⌈
log2

⌈n+ 1

2

⌉⌉
= ⌈log2(n+ 1)⌉ − 1

Referring to Proposition 5, Proposition 6, and Proposition 8, we derive that

⌈log2(n+ 1)⌉ − 1 ≤ d(P1) ≤ max{d(P1), d(P2)} = d(P )− 1 ≤ ⌈log2(n+ 1)⌉ − 1,

thus concluding that d(P ) = ⌈log2(n+ 1)⌉.

For the second approach we will compute the depth of 2-neighbourly polytopes, for which we need
the following result.

Lemma 13. If the graph of a polytope G(P ) contains a complete subgraph with p ≥ 3 vertices, and P
can be decomposed as P =

∑k
i=1 Pi, then at least one of G(Pj) also contains a complete subgraph with

p vertices.

Proof. Consider that u, v, w are vertices of P in the complete subgraph of G(P ) with p ≥ 3 vertices.
Given that any vertex of P can be uniquely represented as the sum of vertices of Pi, i = 1, . . . , k, let
ui, vi, wi be those vertices for Pi that represent u, v, w respectively. Therefore, we can express the edges
[u, v], [u,w], [v, w] as

[u, v] =
k∑

i=1

[ui, vi], [u,w] =
k∑

i=1

[ui, wi], [v, w] =
k∑

i=1

[vi, wi].

The edges [ui, vi], [ui, wi], [vi, wi] are parallel to [u, v], [u,w], [v, w] respectively, and because u, v, w form
a triangle in G(P ), it follows that their ratios of edge lengths satisfies

|ui − vi|
|u− v|

=
|ui − wi|
|u− w|

=
|vi − wi|
|v − w|

.

This implies there exists an index j for which these ratios are nonzero, implying that vertices uj , vj , wj

form a triangle in G(Pj). Extending this reasoning to any other vertex z in the complete subgraph, by
applying the same logic with vertices u, v, z, it is deduced that uj , vj , zj also form a triangle in G(Pj),
and this pattern continues with other vertices.

Theorem 14. If the graph of a polytope G(P ) contains a complete subgraph with p ≥ 3 vertices, then
d(P ) ≥ ⌈log2 p⌉.

Proof. Suppose a subgraph of G(P ) is complete and contains p = 3 or p = 4 vertices. If we assume
d(P ) = 1, then P =

∑k
i=1 Pi, where each Pi is a segment. This contradicts Lemma 13, which implies

that at least one Pi must include p vertices. Therefore, we conclude d(P ) ≥ 2.
For the sake of induction, let’s assume that the result holds for all cases up to p− 1. Now, consider

that G(P ) includes a complete subgraph consisting of p vertices. By definition, we can express P as

P =

k∑
i=1

conv{Pi, Qi}, where d(Pi), d(Qi) ≤ d(P )− 1.

According to Lemma 13, there exists an index j for which G(conv{Pj , Qj}) also contains a complete
subgraph K with p vertices. Without loss of generality, we can assume that Pj contains at least ⌈p2⌉
vertices of K, and consequently the complete subgraph induced by those vertices. Using the induction
hypothesis we obtain

d(P )− 1 ≥ d(Pj) ≥
⌈
log2

⌈p
2

⌉⌉
=
⌈
log2 p

⌉
− 1,

from which it follows d(P ) ≥ ⌈log2 p⌉.
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Corollary 15. Any 2-neighbourly polytope P with p vertices satisfies d(P ) = ⌈log2 p⌉.

Proof. It is a direct consequence of Theorem 14 and Proposition 5.

Corollary 16. Any n-simplex has depth ⌈log2(n+ 1)⌉.

Another important consequence of Theorem 14 is that allows to find a family of polytopes with the
same dimension and increasingly large depth.

Corollary 17. For every p > n ≥ 4 the cyclic n-polytope with p vertices has depth ⌈log2(p+ 1)⌉.

4 Concluding remarks

Knowing that n-simplices has depth ⌈log2(n+ 1)⌉ reveals one part of Conjecture 3, and together with
Proposition 4, we have obtained an upper depth bound for the conjecture. However, a tight lower
bound is still needed to prove it.
In ReLU neural networks, from which Conjecture 3 originated, it has been proven that, for CPWL

functions f and g, if their depth satisfy d(f) < d(g), then d(f + g) = d(g) [8]. If this result also holds
true in polytope neural networks, it could solve the conjecture. However, the existing proof for CPWL
functions is inapplicable to polytopes, as it requires the inverse for the sum operation.
Another interesting contrast between polytope and ReLU networks is found in Corollary 17, where

cyclic n-polytopes, for n ≥ 4, have arbitrary large depth. Instead, for a fixed domain Rn, all CPWL
functions can be computed by ReLU neural networks with a depth of ⌈log2(n + 1)⌉. For polytopes,
this contrast is also seen with Theorem 9, where polygons are shown to have a maximum depth of 2.
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