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Abstract
The history of studies on tilings of the sphere can be traced back to Plato (5 Platonic solids)

and Archimedes (13 Archimedean solids). We study edge-to-edge monohedral tilings of the sphere.
The classification of such tilings was pioneered by D. Sommerville in 1923. Significant progress was
made in the past decades. However, the remaining cases have been the most difficult to classify.
They are also of the utmost importance as they give rise to the majority of the tilings. We have
recently classified all of them and hence completed the whole classification celebrating its centenary.
The process involved new techniques ranging from combinatorics, geometry, algebra and number
theory. All the tilings can be classified into 3 types: Platonic type, earth map type, and sporadic
type. The full classification gives us a comprehensive understanding of their structural relations.

1 Introduction

The tilings in our studies cover the surface of the sphere without holes and overlaps. A tiling is
monohedral if all tiles are geometrically congruent to a fixed polygon. The polygon, assumed to have
geodesic arcs as edges, is called the prototile. By [8, Lemma 1], the prototile of a monohedral tiling of
the sphere must be simple, i.e., its boundary is a simple closed curve. The tilings are also edge-to-edge,
which means that no vertex of a tile lies in the interior of an edge of another tile (for example, see
Figure 1). We also assume that the degree of a vertex in a tiling is at least 3 to avoid trivial examples
by artificially adding extra vertices to edges and the complications inflicted by that. For simplicity, by
tiling we mean edge-to-edge monohedral tiling of the sphere satisfying the above assumptions.

Figure 1: Edge-to-edge v.s. non-edge-to-edge

By [11, Proposition 4], the prototile in a tiling is either a triangle, a quadrilateral, or a pentagon. We
call the prototiles resulting in tilings the admissible prototiles. From [4, 10] and [12], they are shown in
Figure 2) with notations for their edge combinations. For example, a4b means 4 a-edges and 1 b-edge
in a pentagon. Edges with different labels are assumed to have different lengths. In a4, the notation •
(and ◦) denotes the opposite angles of equal value, and • will be used in Figures 5 and 7.

D. Sommerville [9] first studied the tilings with triangle prototiles in 1923. H. L. Davies gave an
outline for the classification [6], which was completed by Y. Ueno and Y. Agaoka [10] in 2002. H. H. Gao,
N. Shi and M. Yan [8] classified the minimal case for pentagon prototiles in 2013 and significant progress
has since been made by Y. Akama, E. X. Wang and M. Yan [1, 2, 12, 13] in the quadrilateral and the
pentagon direction. The remaining and the hardest problems have prototiles with edge combinations
a2bc, a3b and a4b. By overcoming these challenges [3, 4, 5], we present the main result below.
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4-prototiles: abc a2b a3

�-prototiles: a2bc a2b2 a3b a4
•◦

• ◦

D-prototiles: a2b2c a3bc a3b2 a4b a5

Figure 2: The admissible prototiles

2 Main result

Theorem 1. The edge-to-edge monohedral tilings of the sphere are

1. Platonic type: Platonic solids P∗ = P4, P6, P8, P12, P20 and subdivisions on P∗ below

• Simple subdivision SiP6 of the cube for i = 1, ..., 7;

• Triangular subdivision TP∗;

• Barycentric subdivision BP∗;

• Quadrilateral subdivision QP∗;

• Quadricentric subdivision CP∗;

• Pentagonal subdivision PP∗;

• Double pentagonal subdivision DP∗;

2. Earth map type:

• 3 infinite families of 4-tilings: E41 (with reductions EI41, EJ41), E42 and E43;

• 2 infinite families of �-tilings: E�1 (with reductions EA�1, EK� 1, ER�1) and E�2;

• 2 infinite families of D-tilings: ED1 and ED2;

3. Sporadic type: S12�1, S16�1, S16�2, S16�3(and FS16�3), S16�4, S36�5, S36�6, S16D;

4. Modifications:

• Flip F :
Platonic - FBP8, FQP6, FQP8, FPP8, F1PP20, F2PP20;
Earth map 4-tilings - FE4i where i = 1, 2, 3;
Earth map �-tilings - FE�1, F1E�2, F2E�2;
Earth map D-tilings - F1EDi, F2EDi for i = 1, 2, and F ′2ED2, F ′′2 ED2;
Sporadic - FS16�3;

• Rearrangement R: RE�1.

The distinguishing features of tilings are best demonstrated in plane drawings. Platonic type tilings
are shown in Figures 3, 4, 5 and 6, where the open ends of the outmost edges in a drawing converge to
a single vertex. Earth map type tilings are shown in Figures 7 and 8, where the vertical edges in the
top row of each drawing converge to a vertex (the “north pole” ) and those in the bottom converge
to another (the “south pole”), and the left and right boundaries are identified. Sporadic tilings are
shown in Figures 9 and 10. Two examples of modifications on QP8 and on EA�1 are shown respectively
in Figures 11 and 12. The readers are referred to [4] and [5] for detailed discussion on modifications,
including the most sophisticated ones.
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P4 P6 P8 P12 P20

Figure 3: Platonic solids

Figure 4: Simple triangular subdivisions of the cube P6

Triangular subdivision TP∗

Barycentric subdivision BP∗

Quadrilateral subdivision QP∗

Quadricentric subdivision CP∗

Figure 5: Subdivisions of Platonic solids TP∗, QP∗, BP∗, and CP∗

We highlight some interesting facts before the sketch of the proof. First, P20 is the only Platonic
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PP8 PP20 DP8 DP20

Figure 6: Pentagonal subdivisions and double pentagonal subdivisions of P8 and P20
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Figure 7: Earth map type 4-tilings and �-tilings
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Figure 8: Earth map type D-tilings

solid that gives a rigid tiling. Second, the earth map type tilings (or earth map tilings) resemble the
earth map – hence the name. Notably, the poles of earth map tilings are the vertices with negative
combinatorial curvature (see definition in [7]). Between them, a tiling is formed by repeating copies
of a timezone (shaded). Third, in S16�3 and FS16�3, one angle is actually π. Hence they are also
non-edge-to-edge 4-tilings.

Sketch of proof. The complete classification is obtained by determining

1. the admissible prototiles, and

2. the corresponding admissible vertices in terms of angle combinations for each admissible prototile.
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S12�1 S16�1 S16�2 S16�3 FS16�3

S16�4 S36�5 S36�6

Figure 9: Sporadic �-tilings S12�1, S16�1, S16�2, S16�3, FS16�3, S16�4, S36�5, S36�6

S16D

Figure 10: The sporadic D-tiling S16D
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Figure 11: Platonic type tiling from subdivision to modification: P8 → QP8 → FQP8

EA28�1 FEA28�1 FEA28�1 REA28�1

Figure 12: An example of modifications – earth map tiling EA28�1, two tilings from flip modification
FEA28�1 and a rearrangement REA28�1

Such a set of vertices satisfies various combinatorial and geometric contraints. We call it anglewise-
vertex combination (or AVC for short). The tiling in the first picture of Figure 13 has AVC = {αγδ, βn}.

The knowledge of AVC is pivotal: it serves as the instruction of how to put the tiles together. For
example, suppose that we have AVC = {αγδ, β3} for the prototile a3b. Then every vertex is αγδ or
β3. The notation αγδ means that a vertex has one α, one γ and one δ (see first picture, Figure 13)
whereas β3 means that a vertex has three β’s. In the second picture, a vertex αγδ uniquely determines
the three incident tiles 1 , 2 , 3 . Similarly, we then determine α3γ1 · · · = αγδ and γ3δ2 · · · = αγδ and
β3 · · · , β1β2 · · · = β3. Repeating such process, we uniquely determine the tiling given by the cube P6

in the third picture. The same argument works for AVC = {αγδ, βn} with any fixed integer n ≥ 3.
The tiling obtained is indeed EA�1 in the first picture where n = 3 gives P6 (shaded).
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Figure 13: Construction of the tiling E�1 with prototile a3b and AVC = {αγδ, βn}

By edge configurations and the existence of vertices of certain degrees, we obtain the prototiles in
Figure 2. See [4, Lemma 1] and [12, Lemma 9] for further details.

For each admissible prototile, it takes both combinatorial and geometric arguments to determine
the AVCs. It boils down to the study of the angles in a tiling. Powerful tools, such as discharging
method, convexity analysis, spherical trigonometry, Gröbner basis, trigonometric Diophantine analysis
and integer linear programming, are implemented for this purpose.

The full classification of the 4-tilings can be see in [4, 10], the full classification of the �-tilings can
be seen in [4], and the full classification of D-tilings is the collective effort of [1, 2, 5, 8, 12, 13]. An
alternative classification of tilings with a3b prototile via a noval approach is given in [3].
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