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Abstract

Razborov introduced the notion of flag algebras in 2007. Since then, they have become an
important computational and theoretical tool in extremal combinatorics. Originally phrased in
terms of universally quantified first-order theories and often presented purely combinatorially when
applied, we propose a category theoretic foundation for flag algebras that unifies these previous
approaches. This allows us to obtainin some new foundational results for flag algebras, such as a
partial classification of linear and order-preserving maps between them and higher-order differential
methods.

1 Introduction

Razborov introduced flag algebras as a unifying language to connect a distinct set of connected problems
in extremal combinatorics in 2007 [13]. This was phrased in terms of universally quantified first-order
theories and, roughly speaking, is applicable whenever any subset of a structure induces a substructure.
Flag algebras also have a strong connection to combinatorial limit objects [4]. Razborov also introduced
some fundamental techniques, such as ways to relate different algebras in the form of a downward- and
upward uperator, the differential method, a Cauchy-Schwarz-type inequality and the prerequisites for
the sum-of-squares method.

While purely theoretical applications of flag algebras have been important, such as the application
of the differential method to resolve the minimal density of triangles in graphs [14], the computational
approach stemming from the sum-of-squares method has had the most significant impact, covering
results relating to 3-edge-colored triangles [5], 4-edge-colored triangles [7], 3-edge-colored rainbow tri-
angles [3], pentagons in triangle-free graphs [6], as well as Turán problems [15], [1], [12] and[10]. These
applications often present their own purely combinatorial derivation of flag algebras and their relevant
properties. However, some of these ad-hoc derivations, while valid from a combinatorial point of view,
are not covered by Razborov’s original first-order framework; in particular problems relating to hy-
percubes [2], [1] and finite vector spaces [11] do not fulfill the property that every subset induces a
substructure.
Partially to address this issue, we present a category theoretic foundation for flag algebras. This also

answers Coregliano and Razborov’s [4] inquiry for a more in-depth study of the category Int whose
objects are the universally quantified first-order theories with all total interpretations as arrows. It
also ties into previous efforts of obtaining a categorical generalisation of combinatorial phenomena as
in part the study of graph limits [8] (see chapter 23.4 and the discussion concerning categories and
flag algebras). The category theoretic view has the added benefit of resulting in an overall cleaner
presentation. Finally, this framework also allows us to obtain some new results regarding the theory
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of flag algebras. In particular, we obtain a partial classification of linear and order-preserving maps
between flag algebras, complementing previous efforts in Razborov’s original paper, and we formulate
higher-order vertex differential methods.

We start by giving the category theoretic formulation of flag algebras and its relation to Int in
Section 2. We establish their basic properties within this framework in Section 3 and cover some novel
statements in Section 4. We conclude with a short discussion in Section 5.

2 Construction

We let FinInj denote the category that has all finite sets as its objects and injections between these
sets as arrows. Our first observation is that the category Int is a full subcategory of the category of
presheaves on FinInj.

Observation 1. Given a category A, denote by FinPsh(A) the category of finite presheaves on A.
Let us show how to embedd Int as a full subcategory of FinSet. For an object T of Int, define the
finite presheaf FT : FinInjop → FinSet where FT (S) = {M is a T -model with ground set S}. For an
arrow α : R → S in FinInj, we let FT (α)(M) be the unique model with ground set R so that α is an
embedding FT (α)(M) →M . The association T → FT is then a full functor Int → FinPsh(FinSet).

In other words, every total interpretation corresponds to a natural transformation of presheaves
and vice versa. In order to get a category theoretic definition of flag algebras we need the technical
definition of an Archimedean partially-ordered vector space.

Definition 2. An R-vector space V with a preordering ≤ is Archimedean when for every v, w ∈ V we
have that v ≤ r w for every r ∈ R>0 implies v ≤ 0. A linear map f : V →W between two Archimedean
vector spaces is order-preserving if v ≤ v′ in V implies that f(v) ≤ f(v′) in W . Let Arch denote
the category with all (possibly infinite) Archimedean preordered R-vector spaces as its objects and all
order-preserving linear maps as its arrows.

Definition 3. The powering functor R· : Set → Arch is given by mapping any object S of Set to the
Archimedean space RS and any arrow f : R → S of Set to the map RS → RR that sends a function
g : S → R to g ◦ f .

Momentarily disregarding their multiplicative structure, the flag algebras as defined by Razborov
in [13, 4] can be seen as a functor A : Int → Arch. The colimit A[F ] = colimRF , which can be
shown to exist for any F ∈ FinPsh(A) for any category A, lifts this to a functor FinPsh(A) → Arch.
In particular, for every universally quantified first-order theory T , the flag algebra A[T ] as defined by
Razborov is isomorphic as an Archimedean vector space to A[FT ] as just defined. The space limR[FT ]
corresponds to R-linear combinations of positive homomorphisms.

It remains to establish under what conditions we can define a multiplicative structure on A[F ] in
such a way that it has the same properties as the originally defined flag algebras. We note that we
choose to put all structural requirements on the base category A and none on the nature of the presheaf
F , so that we can define an algebra for any F ∈ FinPsh(A) assuming the right conditions on A.

Definition 4. For a given category A, we write x ≤ y, whenever there exists a morphism from x to y.
We say that A is a density category if:

1. For any two objects x, y of A, there are finitely many arrows in A(x, y);

2. For any two arrows α, β ∈ A(x, y), there exists an isomorphism γ ∈ A(y, y) such that γ ◦ α = β;

3. There exists an increasing countable sequence of objects x1, x2, . . . so that for any object x there
exists some index i s.t. x ≤ xi;



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

4. For any two objects y, z ∈ A there exist r ≥ 0 so that for every ϵ > 0 there exists x0 ∈ A so that
for all x0 ≤ x the fraction |A(y, x)|/|A(z, x)| is well-defined and does not differ from r by more
than ϵ.

5. For any finite tuple of objects P there exists another finite tuple of objects co(P ) together with
arrows αx,y : x → y for any x ∈ P and y ∈ co(P ), which, for any z ∈ Obj(A), induce an
isomorphism of sets ∏

x∈P
A(x, z) ≃

∐
y∈coP

A(y, z).

We use the term ‘density categories’, because these are precisely the properties that are needed in
order to make sense of the usual notion of densities between structures as well as products of densities.
When A is a density category, F ∈ FinPsh(A) as well as f ∈ F (x) and g ∈ F (y), we can define an
equivalent notion to Razborov’s homomorphism density through the quotient

p(f ; g) = |{α ∈ A(x, y)|F (α)(g) = f}/|A(x, y)|.

When f ∈ RF (x) and g ∈ RF (y) are linear combinations, we can extend this density bilinearly to
p(f ; g). We now define a multiplication in A[F ].

Definition 5. Let F ∈ FinPsh(A). Given a tuple f1 ∈ F (x1), . . . , fm ∈ F (xm) and P = (x1, . . . , xm),
define their product as

f1 · · · fm =
∑

y∈co(P )

gy lim
z

|A(y, z)|∏
x∈P |A(x, z)|

∈ A[F ]

where gy ∈ RF (y) is the unweighted sum of all g ∈ F (y) so that for i = 1, . . .m, we have fi = g◦F (axi,y).

We let 1 ∈ A[F ] denote the sum of all flags corresponding to an arbitrary but fixed source object
y. Note that the definition of 1 ∈ A[F ] is independent of the choice of the source object y and
multiplication in A[F ] is associative, commutative, and has 1 as its unit. Furthermore, squares are
positive in A[F ].

Examples for density categories include the aforementioned FinSet as well as finite vector spaces
FinVecq over some finite field Fq with injective arrows and the category HyperCube of hypercubes with
morphisms the injective face maps. In Observation 1 we showed how to convert a combinatorially
meaningful object T in Int to an object of FinPsh(FinInj). The same theme can be used to convert
previously studied theories over FinVecq and HyperCube to finite presheaves. For example, c-vertex
colorings of the objects of FinVecq are represented by that F ∈ FinPsh(FinVecq) which maps a vector
space V to the set F (V ) of all c-vertex colorings of V , not up to isomorphism. Similarly, c-edge colorings
of the objects of HyperCube are represented by that F ∈ FinPsh(HyperCube) mapping a hypercube C
to the set F (C) of all c-edge colorings of the edges of C, not up to isomorphism.

3 Properties

All of the flag algebra calculus remains true when we are considering a finite presheaf F ∈ FinPsh(A)
over a density category. In particular, there are downward operators. Since squares are always positive,
this means that the sum of squares method works for any such F .

Definition 6. Let P : A → B be a functor between density categories. The downward operator between
two flag algebras J·KP : A[F ◦ P ] → A[F ] is defined as the map induced by sending any f ∈ (F ◦ P )(x)
to the same element in F (P (x)).

The notion of types for flag algebras is essential and the basis for the sum-of-squares method. What
they allow for is an amalgamated multiplication of flag aglebra elements. This produces elements in
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the positive cone of A[F ] that would be extremely difficult to detect otherwise. In the context of the
categorification of flag algberas, types are given by coslice categories. Let A be a density category
and x ∈ Obj(A) so that the under category x/A is again a density category. Then, denote by Ux the
forgetful functor x/A → A. The algebra at x is Ax[F ] = A[F ◦Ux] and the downward operator between
the algebras Ax[F ] → A[F ] is given by Definition 6. Similarly, when α : x → y is a morphism, there
is an upward operator πη : Ax[F ] → Ay[F ]. It is defined by multiplying an element f ∈ Ax[F ] with a
projection of the unit of Ay[F ] and interpreting the result as an element of Ay[F ] again. The upward
and downward operators are compatible in the same ways as in [13].
Problems in extremal combinatorics usually speak of a certain limit of combinatorial structures

that minimizes or maximizes an objective function. In terms of Razborov’s flag algebras, these limit
sequences are represented by order-preserving algebra homomorphisms A[FT ] → R and vice versa.
Several of the properties we require of a density category have the sole purpose of ensuring that this
correspondence remains true for F ∈ FinPsh(A).

Definition 7. For an increasing sequence x1, x2, . . . of objects in A as in Item 3 and elements un ∈
RF (xn), we say that un is convergent if for every flag f of A[F ] the limit of p(f ;un) as n→ ∞ exists.

Then, by our definition of density categories we get the following equivalent statement to Razborov’s
Theorem 3.3 from [13]. For two partially ordered algebras A and B, let Hom+(A,B) denote the set of
order-preserving maps from A to B.

Theorem 8. Let x1, x2, . . . be a countable sequence of objects in A as in Item 3. There is a surjective
correspondence between Hom+(A[F ],R) and convergent sequences un ∈ F (xn).

4 Results

In this section, we investigate what order-preserving, not necessarily multiplicative, morphisms A[F ] →
A[G] there exist when F,G ∈ FinPsh(A). Some of these maps are already known, like the downward
operators or the the image under A of a natural transformation G → F of presheaves. We will focus
on showing how to classify the particular case of natural transformations RF → RG. Interestingly,
when A = FinInj, the presheaf G is GT for some theory T like edge colored u-uniform hypergraphs
without forbidden substructures, these natural transformations RF → RG coincide bijectively with
the elements of Hom+(A[G,F ],R) where [G,F ] is the internal hom of presheaves. In general however,

Hom+(A[G,F ],R) does not classify the natural transformations RF → RG for arbitrary presheaves F
and G, even over A = FinInj.
First we show that there are many ways to represent every natural transformation RF → RG injec-

tively as a convergent sequence in the presheaf R[F ×G]. Intuitively, we think of R[F ×G] as the space
in which we represent the graph of a natural transformation RF → RG, just as it would be when we
consider the graph in A×B of a function A→ B when A and B are sets.

Remark 9. For a natural transformation L : RF → RG, denote by L∨ the dual natural transformation
R[G] → R[F ]. Let ψ ∈ Hom+(A[G],R) be a positive homomorphism that is non-zero on every element
of G and let ui ∈ G(xi) be a sequence that converges to ψ.
Consider the convergent sequence in R[F ×G]

wi = L∨(ui)× ui.

From such a sequence wi, we can uniquely recover the values L∨(g) for g ∈ G(x) through the formula

L∨(g) = 1
ψ(g)

∑
f∈F (x)

(
lim
i
p(f × g;wi)

)
f. (1)

This is a consequence of the fact that L is a natural transformation. Therefore, given ψ, every natural
transformation L : RF → RG corresponds to a unique convergent sequence in R[F ×G].
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The problem is that given ψ ∈ Hom+(A[G],R), we do not know which convergent sequences in
R[F ×G] correspond to natural transformations L. Therefore, we introduce the technical notion of a
vertex extension property for ψ which guarantees a converse.

Theorem 10. Assume that ψ ∈ Hom+(A[G],R) has the vertex extension property for all elements of
G and let ui ∈ G(xi) be a sequence that converges to ψ. Then for every sequence vi ∈ R[F (xi)] so that
vi × ui converges in R[F ×G], Equation (1) defines a natural transformation.

The precise definition of the vertex extension property is given in the following. Example homomor-
phisms that fulfill this condition are the u-uniform random hypergraphs ψ ∈ Hom+(A[Fu -Hyper],R).
Therefore, we get a complete description of all natural transformations RF → RFu -Hyper when F ∈
FinPsh(FinInj).

Definition 11. Assume that A and x/A are density categories and let f ∈ F (x). Let ψ ∈ Hom+(A[F ],R)
with ψ(f) > 0. Recall that we denote the forgetful functor x/A → A by Ux. For any y and η : x→ y as
well as g ∈ F (y) denote by ⟨g⟩η ∈ (F ◦Ux)(η) the same object g but viewed as an element in a presheaf
over a coslice category.
We say that ψ has the vertex extension property for f if there exists a sequence ui ∈ F (xi) converging

to ψ so that for every α : x → y and h ∈ F ◦ Ux(α) with F (α)(JhKUx) = f , the sequence of random
variables Ei ◦ βi

Ei ◦ βi = p(h; ⟨ui⟩βi)−
ψ(JhKUx )
ψ(f) p(f ;F (βi)(ui))

with uniformly independent βi ∈ A(x, xi), converges almost surely to 0 as i tends to infinity.

Finally, we study a special case of linear and order-preserving maps that give rise to the vertex
differential method. When A = FinInj and the presheaf is FT , the map arises from the notions we
have just developed as follows. Denote by Mn the multiplication endofunctor FinInj → FinInj that
maps S 7→ S × [n]. The vertex differential method then arises from a composition

A[FT ] → A[FT ◦Mn] → A[FT ]

where the first arrow is induced by a natural transformation RFT → RFT ◦Mn and the second is the
downward operator. We will however simply write out the defining formula of this linear and order-
preserving map directly.

Lemma 12. We work over A = FinInj and denote by 1 ∈ FinInj the set {1}. Let T be a universally
quantified first-order theory. Choose any h ∈ A1[FT ] with h ≥ −1 and JhKU1 = 0. For f ∈ FT (y) define

V (f) =
r
⟨f⟩idy

∏
α∈A(1,y)

(
1 + πα(h)

)z
Uy

.

Then, V is linear order-preserving and its derivatives as h → 0 are the (higher order) differential
methods.

The fact that V is order-preserving follows from h ≥ −1. The first-order method was already
discovered by Razborov in [13]. All higher-order methods are novel. It is also possible to get higher-
order edge-differential methods. To this end we must consider the functors Bu : FinInj → FinInj

which map S 7→
(
S
u

)
.

5 Discussion

We have shown that the theory of flag algebras very naturally carries over to the setting of density cate-
gories. However, several interesting avenues of exploration remain. It would for example be interesting
to explore, if one can fully classify the homomorphism Hom+(A[F ],R) as Razborov and Coregliano [4]
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did for canonical universally quantified theiories. Furthermore, Razborov [13] was able to show that
so called open interpretations give a class of maps between certain localizations of flag algebras. It
would be interesting to see how our observations regarding the classification of natural transformations
RF → RG would carry over to the case of localizations. In fact, one can use the endofunctor Mn to
construct some basic maps into localizations, but we have not pursued this line of thought any further
at this point.
The fact that we have chosen our presheaves to take values in finite sets is essential for the basic

features of Flag Algebras. We are grateful to an anonymous referee for directing our attention to the
structural limits of [9]. Stated briefly in our language, given a countable signature λ, define a measure
space valued presheaf F on FinInj

F (S) = ({(A, v) | A is a finite λ-structure on S and v : [n] → S}, D, µcount)

where D is the σ-algebra generated by all subsets of F (S) that are definable by FO[λ] formulas with
free variables in {xs | s ∈ S}. The measure µcount is the counting measure that gives weight 1 to each
equivalence class of the (A, v). Then, the basic objects of study of [9] are limL1(F ), corresponding to
the finite λ-structures, the flag algebra A[F ] on colimL∞(F ) corresponding to the Lindenbaum-Tarski
algebra and its dual limba(F ).
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