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The rectilinear convex hull of disks
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Abstract

We explore an extension to orthogonal convexity of the classic problem of computing the convex
hull of a collection of planar disks. Namely, we enumerate all the changes to the boundary of the
rectilinear convex hull of a collection of n planar disks, while the coordinate axes are simultaneously
rotated by an angle that goes from 0 to 2π. Our algorithm takes Θ(n log n) time and Θ(n) space.

1 Introduction

Let D denote a collection of n closed planar disks. The convex hull of D, which we denote by CH(D),
is the region obtained by removing from the plane all the open half-planes whose intersection with D is
empty. The rectilinear convex hull of D, which we denote by RCH(D), is instead the region obtained
by removing from the plane all the axis-aligned open wedges of aperture angle π

2 , whose intersection
with D is empty (a formal definition is given in Section 2). See Figure 1.

Figure 1: A set D of closed disks and RCH(D) for two orientations of the coordinate axes. The axes
are shown in the top-right corner of each figure. The edges of CH(D) are shown with dashed lines.
The interior and the edges of RCH(D) are shown respectively, in light and dark brown. On the left,
RCH(D) has two connected components. On the right, RCH(D) has a single connected component.

The rectilinear convex hull is the analog of the (standard) convex hull on a non-traditional notion of
convexity called orthogonal convexity [6]. In this notion of convexity, convex sets are restricted to those
whose intersection with any horizontal or vertical line is either empty, a point, or a line segment. The
rectilinear convex hull introduces two important differences with respect to the standard convex hull.
On one hand, note that RCH(D) may be a simply connected set, yielding an intuitive and appealing
structure. However, if the union ofD is disconnected, thenRCH(D) may have several simply connected
components. On the other hand, observe that the orientation of the empty wedges changes along with
the orientation of the coordinate axes, changing the shape of RCH(D) as well. The former property
has shown to be useful to better separate finite sets of points that are not separable by a line or even
by a standard convex hull [1]. The later property has been used to explore a family of problems in
which the rotation angle of the coordinate axes is used as a search space for optimization criteria [2].
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Let RCHθ(D) denote the rectilinear convex hull of D computed after simultaneously rotating the
coordinate axes by an angle θ (a formal definition is given in Section 2). Let ∂(S) denote the boundary of
a planar set S. In this paper we describe an Θ(n log n)-time and Θ(n)-space algorithm that enumerates
the changes to ∂(RCHθ(D)) while θ is increased from 0 to 2π. Notably, despite the introduction of
rotations to the coordinate axes, our algorithm successfully achieves the complexities of the well known
algorithm to compute the standard convex hull of a collection of planar disks [5].

2 Preliminaries

The orientation of a line is the smallest of the two possible angles it makes with the X+ positive
semiaxis. A set of orientations is a set of lines with different orientations passing through some fixed
point. Hereafter we consider a set of orientations formed by two orthogonal lines. For the sake of
simplicity, we assume that both lines are passing through the origin and are parallel to the coordinate
axes. We denote such an orientation set with O. We say that a planar region is O-convex, if its
intersection with a line parallel to a line of O is either empty, a point, or a line segment.

Let ρ1 and ρ2 be two rays with a common apex point x ∈ R2 such that, after rotating ρ1 around x
by an angle of ω ∈ [0, 2π), we obtain ρ2. We refer to the two open regions in the set R2 \ (ρ1 ∪ ρ2) as
wedges. We say that both wedges have vertex x and sizes ω and 2π − ω, respectively. A quadrant is a
wedge of size π

2 whose rays are parallel to the lines of O. We say that a planar region is free of points
of D, or D-free for short, if it contains no point of a disk of D. Let Oθ denote the set resulting after
simultaneously rotating the lines of O in the counterclockwise direction by an angle of θ. Let Qθ be
the set of all (open) D-free quadrants of the plane whose rays are parallel to the lines of Oθ.

Definition 1. The rectilinear convex hull of D with respect to Oθ, is the closed and Oθ-convex set

RCHθ(D) = R2 \
⋃

q∈Qθ

q.

We assume that O0 = O and RCH0(D) = RCH(D).

As mentioned in Section 1, there are two main differences between the standard and the rectilinear
convex hull. First, for any fixed value of θ we have that RCHθ(D) may be non-convex and may even
be formed by several connected components; see again Figure 1. Each component is closed, simply
connected, Oθ-convex, and is either a disk (if D is a singleton) or a region bounded by a curvilinear
polygon, which is a simple polygon whose edges are either line segments or circular arcs. If an edge
is a line segment, then it belongs to the boundary of a D-free quadrant. If it is instead a circular
arc, then it belongs to the boundary of a disk of D. The second difference is a property we call
orientation dependency : except for particular values of an angle α, such as multiples of π

2 , we have
that RCHθ(D) ̸= RCHθ+α(D), α ∈ [0, 2π).
From an algorithmic point of view, CH(D) is described by a circular list of (possibly repeated) disks

of D, sorted by appearance as we traverse ∂(CH(D)) in counterclockwise direction. From this list we
can trivially obtain ∂(CH(D)) in linear time; see [5] for more details. We describe ∂(RCHθ(D)) for
fixed values of θ in a similar way. Instead of a single list, we use four disjoint lists containing each a
set of circular arcs of the disks of D, sorted by appearance as we traverse ∂(RCHθ(D)). To formally
describe these lists, we use a simple (yet crucial) observation that derives from Definition 1. An ω-
wedge is a wedge of size at least ω. We say a point x ∈ R2 is ω-wedge D-free, if there exists a D-free
ω-wedge with apex at x.

Observation 2. Consider a fixed value of θ. A point x of (a disk of) D lies on the boundary of
RCHθ(D) if, and only if, it is π

2 -wedge D-free.

The N-orientation (for North-orientation) through a point x ∈ R2 is the ray pointing upwards starting
at x. The S-orientation, E-orientation, and W-orientation through a point are defined analogously. A
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point x ∈ R2 is ω-wedge D-free with respect to the N-orientation, if there is a D-free ω-wedge with
apex at x that contains the N-orientation through x. The same definition can be analogously given for
the remaining three orientations.

When computing ∂(RCHθ(D)), there are two types of changes as θ is increased from 0 to 2π:
combinatorial changes, where there is a change on the ordered list of circular arcs of D on ∂(RCHθ(D));
and geometric changes, where there is no change on the list, but only on the coordinates of the
endpoints of circular arcs. Geometric changes between two combinatorial changes can be accounted
for by representing the circular arc endpoints as (known) functions of θ, instead of fixed values. We
thus focus on computing combinatorial changes.

3 Rectilinear convex hull of a set of disks

Let N (D) denote the upper envelope of D, that is, the set of points of D seen from the north infinity.
Analogously, let S(D), E(D), and W(D) denote respectively, the envelopes of D seen from the South,
East, and West infinities. To compute and maintain ∂(RCHθ(D)) we proceed as follows. We first
compute N (D), S(D), E(D), and W(D). From the four envelopes we compute the points of D that
are π

2 -wedge D-free with respect to the N-, S-, W-, and E- orientations. We combine the information
computed into a data structure to compute the four fronts for any value of θ. Then, we traverse this
data structure increasing θ from 0 to 2π while computing all the combinatorial changes in ∂(RCHθ(D)).

Computing the envelopes. The complexity of each envelope is O(n) since the union of the disks
of D has linear complexity [4]. Each envelope can be computed in O(n log n) time and O(n) space [3].

The set of points that are π
2 -wedge D-free. Consider in the following the envelope N (D); see

Figure 2. The remaining three envelopes are similarly processed. The envelope is formed by a sequence
of x-monotone circular arcs sorted by appearance while sweeping the plane from left to right. Two
consecutive arcs may share and endpoint, and no vertical line intersects the interior of two arcs.

βi
γi

li

ri

pi
βk

γk

Figure 2: The upper envelope N (D) of a set of circles.

We first show how to decide which endpoints of the arcs of N (D) are π
2 -wedge D-free. Let ai denote

the ith arc of N (D), and pi, pi+1 denote the endpoints of ai. For each endpoint pi, we compute the
wedge with apex at pi that contains the N -orientation through pi, and has the biggest possible size
ωi. We keep the endpoints for which wi ≥ π

2 , as well as the corresponding wi-wedge. Let ≤ denote the
weak order on the endpoints induced by the values of their abscissas. We proceed as follows.

1. Sweep N (D) from left to right doing the following while visiting each endpoint pi. Let Di denote
the subset of N (D) whose arcs have endpoints pj such that (i) pj ≤ pi if pi is a right endpoint of
an arc, and (ii) pj < pi otherwise. Update CH(Di) in O(log n) time, and add pi to Di.
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Notice that we have to update CH(Di) from CH(Di−1) by either: (i) adding an arc ai = (pi−1, pi)
to CH(Di−1) and computing the corresponding bridge, or (ii) adding a point pi to CH(Di−1) by
computing the supporting line to CH(Di−1) from pi.

We do this computation in O(n) overall amortized time since we use the order of the arcs in N (D)
and walk along N (D) till we find the arcs to define the bridge contained in the supporting line.
Once we find the arcs, the bridge can be computed in constant time using elementary geometry.

2. Compute the supporting line li from pi to CH(Di−1) by traversing the boundary of CH(Di−1)
until we find the tangent vertex of CH(Di−1). The tangent vertex can be either an endpoint in
N (D) or a point in an arc in N (C), in the last case compute this point and the supporting line
in constant time. At the end of the sweep, this process amortizes to O(n) in time and space. We
also compute the angle βi formed by li and the line with N-orientation passing through pi.

3. We can proceed doing the same computation but considering the right to left sorting, and main-
taining D′

i−1 which is defined symmetrically. Then, we compute the supporting line ri from pi
to CH(D′

i−1), and compute the angle γi formed by ri and the line with N-orientation passing
through pi. Again, at the end of the sweep this process amortizes to O(n) in time and space.

4. Compute ωi = βi + γi, and check whether ωi ≥ π
2 . In the affirmative, let ωi be the angular

interval associated with pi. For each pi such that ωi ≥ π
2 , we form the angular interval for pi as

the intersection with the unit circle of the image of the wedge by mapping pi to the origin.

Since there are O(n) endpoints, the complexity of these steps is O(n) time and space. We proceed
analogously with the envelopes S(D), E(D), and W(D). Thus, the total complexity for this process
for the four envelopes is O(n) time and space. We are considering the at most O(n) endpoints pi of the
four envelopes and computing which of these endpoints pi have ωi ≥ π

2 for some of the four orientations
above. For each such point and orientation, we record its angular interval (as it is defined a above in
the case of the northern orientation). From the discussion above we have the following result.

Theorem 3. The O(n) endpoints pi of the envelopes N (D), S(D), E(D), and W(D) having an angle
ωi ≥ π

2 , their angles ωi, and their angular intervals can be computed in O(n log n) time and O(n) space.

We next show how to compute the interior points of the arcs of D that belong ∂(RCHθ(D)). For
each arc ai = (pi−1, pi) of N (D), we will show how to compute the angles β and γ for the interior
points of ai, and therefore, how to compute the parts of ai (if any) whose interior points have angles
β and γ such that β + γ = ω ≥ π

2 .
Given an arc ai = (pi−1, pi) of N (D), we proceed as in the item 1. For the endpoint pi of ai we

update in O(log n) time the CH(Di), where Di is the set of arcs in N (D) with the endpoints pj such
that (i) pj ≤ pi if pi is a right endpoint of an arc, or (ii) pj < pi otherwise adding pi to Di.

Proceeding with the endpoints of the arc ai = (pi−1, pi), assume that we have computed the left
support line li−1 and the right support line ri−1 from the endpoint pi−1, and analogously, li and ri
from the endpoint pi. Then, because we maintain the CH(Di) and CH(D′

i) for ai, we can split ai into
sub-arcs such that from the points inside each sub-arc we have a unique left (resp. right) supporting
arc in N (D) for computing the respective supporting lines. In each sub-arc we know the left and right
arcs that support the left (resp. right) supporting lines from the endpoints of a sub-arc in ai. Next, we
determine whether and where the points inside these sub-arcs having angle w ≥ π

2 . We parameterize
the calculus of the angle ω in each sub-arc as a function of the angle θ that it is illustrated in Figure 3.
The blue curve in Figure 3 Right is a Limaçon curve, see Sánchez-Ramos et al. [7], also known as a

Limaçon of Pascal or Pascal’s Snail. The cardioid is a special case. We have drawn this curve for two
circles in Figure 3 Right. The part of the Limaçon curve that we are interesting in is the part of the
curve that is in between the two red circles, say cj and ck, and defined by the intersection point of the
perpendicular lines which are tangents lines to cj and ck, as illustrated in Figure 3 Left.
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Figure 3: Left: the angle ω = π/2 in a point (x, y) of a sub-arc ai. Right: The Limaçon curve with
angle π/2, in blue. The red circles contain the two arcs of the envelope N (D). The left circle has
center (−3, 0) and radius 1 and the right circle has center (4, 0) and radius 2.

We compute the solutions of the equations and determine the intervals. In constant time, we can
check whether the values of ω inside the computed intervals verify that ω ≥ π

2 , and thus, we determine
the constant number of intervals where ω ≥ π

2 . We can proceed with the other envelopes S(D), E(D),
and W(D). Therefore, the total complexities for all together are O(n log n) time and O(n) space.

Theorem 4. The O(n) intervals in the arcs of circles in the envelopes N (D), S(D), E(D), and W(D)
whose interior points have an angle ω ≥ π

2 , their angles ω, and the corresponding angular intervals can
be computed in O(n log n) time and O(n) space.

The data structure. We translate all the angular intervals for all the arcs of D in N (D), S(D),
E(D), and W(D), to angular intervals inside [0, 2π] on the real line. In this way, we can do a line
sweep with four vertical lines corresponding to angles θ, θ+ π

2 , θ+π, and θ+ 3π
2 in a circular way (i.e.,

completing a [0, 2π] round with each line), and then inserting and deleting the changes of the arcs (or
part of them) that belong to ∂(RCHθ(D)) as θ changes in [0, 2π).
Now, considering that an endpoint or an interior point of an arc in any of the envelopes N (D), S(D),

E(D), and W(D) can be the apex of a D-free π
2 -wedge, from Theorems 3 and 4, we conclude that we

can compute the points of disks of D that belong to ∂(RCHθ(D)) as θ ∈ [0, 2π] in O(n log n) time and
O(n) space. From this discussion we obtain the main result of our paper.

Theorem 5. Given a set D of n closed disks in the plane, computing and maintaining ∂(RCHθ(D))
as θ is increased from 0 to 2π can be done in O(n log n) time and O(n) space.
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