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Abstract

An r-graph H is called linear if any two edges of H intersect in at most one vertex. Let F and
H be two linear r-graphs. If H contains no copy of F , then H is called F -free. The linear Turán
number of F , denoted by exlin

r (n, F ), is the maximum number of edges in any F -free n-vertex linear
r-graph. The crown C1,3 is a linear 3-graph which is obtained from three pairwise disjoint edges
by adding one edge that intersects all three of them in one vertex. In 2022, Gyárfás, Ruszinkó
and Sárközy initiated the study of exlin

3 (n, F ) for different choices of an acyclic 3-graph F . They
established lower and upper bounds for exlin

3 (n,C1,3). In this paper, we generalize the notion of a
crown to linear r-graphs for r ≥ 3, and also generalize the above results to linear r-graphs.

1 Introduction

The result presented here is motivated by a number of very recent papers on linear Turán numbers.
We extend a result on crown-free linear 3-graphs to linear r-graphs for r ≥ 3. Throughout, we let r be
an integer with r ≥ 3.

Let H = (V,E) be an r-graph consisting of a set of vertices V = V (H) and a collection E = E(H)
of r-element subsets of V called edges. If any two edges in H intersect in at most one vertex, then H
is said to be linear. Let F be a linear r-graph. Then H is called F -free if it contains no copy of F as
its subhypergraph. The linear Turán number of F , denoted by exlinr (n, F ), is the maximum number of
edges in any F -free linear r-graph on n vertices. More generally, for two linear r-graphs F1 and F2, H
is called {F1, F2}-free if it contains no copy of F1 or F2 as its subhypergraph. The linear Turán number
of {F1, F2}, denoted by exlinr (n, {F1, F2}), is the maximum number of edges in any {F1, F2}-free linear
r-graph on n vertices.

A linear 3-graph is acyclic if it can be constructed in the following way. We start with one edge. Then
at each step we add a new edge intersecting the union of the vertices of the previous edges in at most
one vertex. In 2022, Gyárfás, Ruszinkó and Sárközy [5] initiated the study of exlin3 (n, F ) for different
choices of an acyclic 3-graph F . In [5], they determined the linear Turán numbers of linear 3-graphs
with at most 4 edges, except the crown, for which they gave lower and upper bounds (Theorem 1
below). Here the crown is a linear 3-graph which is obtained from three pairwise disjoint edges on 3
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vertices by adding one edge that intersects all three of them in one vertex. In [5], the authors used E4

to denote a crown, but here we adopt the notation C1,3 from the more recent paper [9].
Since the publication of [5], there have appeared several results involving the linear Turán number

of some acyclic linear hypergraphs [6, 7, 8]. In the remainder, we focus on results involving C1,3, as
our aim is to present a natural generalization of these results to linear r-graphs.
In [5], Gyárfás, Ruszinkó and Sárközy obtained the following result.

Theorem 1 ([5]).

6

⌊
n− 3

4

⌋
+ ε ≤ exlin3 (n,C1,3) ≤ 2n,

where ε = 0 if n− 3 ≡ 0, 1 (mod 4), ε = 1 if n− 3 ≡ 2 (mod 4), and ε = 3 if n− 3 ≡ 3 (mod 4).

Indeed, for the lower bound in Theorem 1, the authors of [5] gave the following construction for
obtaining a class of extremal linear C1,3-free 3-graphs. We recall this construction for later reference.
Start with the graph mK4 consisting of m disjoint copies of the complete graph on four vertices. The
graph mK4 admits a one-factorization, i.e., a decomposition of the edge set into three edge-disjoint
perfect matchings. Each of these matchings corresponds to 2m vertex-disjoint pairs of edges. Add one
new vertex for each of the matchings and form 2m triples by adding this vertex to each of the 2m pairs.
Now ignore the edges of the mK4. This construction consists of n = 4m + 3 vertices and 6m triples,
and it is easy to check that the corresponding 3-graph is linear and C1,3-free. Thus for n = 4m+3, this
construction provides an extremal 3-graph with 6

⌊
n−3
4

⌋
+ ε edges, where ε is defined as in the above

theorem. The construction can be adjusted to obtain extremal 3-graphs for the other residue classes
modulo 4.
In a later paper [2], Carbonero, Fletcher, Guo, Gyárfás, Wang, and Yan proved that every linear

3-graph with minimum degree 4 contains a crown. The same group of authors conjectured in [1] that
exlin3 (n,C1,3) ∼ 3n

2 , and proposed some ideas to obtain the exact bounds. After that, Fletcher [4]
improved the upper bound to exlin3 (n,C1,3) ≤ 5n

3 .
Very recently, Tang, Wu, Zhang and Zheng [9] established the following result.

Theorem 2 ([9]). Let G be any C13-free linear 3-graph on n vertices. Then |E(G)| ≤ 3(n−s)
2 , where s

denotes the number of vertices in G with degree at least 6.

The above result shows that the lower bound in Theorem 1 is essentially tight. Furthermore, the
above result, combined with the results in [5], essentially completes the determination of the linear
Turán numbers for all linear 3-graphs with at most 4 edges.

2 Crown-free linear r-graphs

In the remainder, we focus on the following natural generalization of the notion of a crown to linear
r-graphs. An r-crown C1,r is a linear r-graph on r2 vertices and r + 1 edges obtained from r pairwise
disjoint edges on r vertices by adding one edge that intersects all of them in one vertex. In fact, for
our purposes we need a second generalization of the crown to linear r-graphs. We let C∗

1,r denote

the following linear r-graph on r2 − r + 3 vertices and r + 1 edges. It consists of a set of r − 2
edges {e1, e2, . . . , er−2} that intersect in exactly one vertex v, two additional disjoint edges er−1 and
er that are also disjoint from {e1, e2, . . . , er−2}, and one additional edge e intersecting each edge of
{e1, e2, . . . , er} in exactly one vertex except for v. Note that both C1,r and C∗

1,r are isomorphic to the
crown in case r = 3.
In the following, we establish an upper bound on exlinr (n, {C1,r, C

∗
1,r}), and a lower bound on

exlinr (n, {C1,r, C
∗
1,r}) when r − 1 is a prime power.

In order to obtain a lower bound on exlinr (n, {C1,r, C
∗
1,r}), we can use a similar construction as in the

description following Theorem 1. We can construct a {C1,r, C
∗
1,r}-free linear r-graph on n vertices by

using the notion of a transversal design.
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Assume that n is a multiple of k for some integer k ≥ r − 1. A transversal design T (n, k) is a linear
k-graph on n vertices, in which the vertices are partitioned into k sets, each containing n

k vertices,
and where each pair of vertices from different sets belongs to exactly one edge on k vertices. Note
that T (n, k) is an n

k -regular k-partite linear k-graph. It can be found in [3] that such T (n, k) exist for
sufficiently large n when k divides n. In particular, T (k2, k) exists when k is a prime power.

Let r − 1 be a prime power. Denote by T ′((r − 1)2, r − 1) the linear (r − 1)-graph obtained from
T ((r−1)2, r−1) by adding one edge for each set in the partition. Note that for r = 3, T ′((r−1)2, r−1)
is a K4. We next extend m disjoint copies of T ′((r − 1)2, r − 1) to a {C1,r, C

∗
1,r}-free linear r-graph in

the same way as we did for r = 3 starting with mK4. Consider a one-factorization of the linear (r−1)-
graph mT ′((r− 1)2, r− 1). Each of the r factors corresponds to (r− 1)m vertex-disjoint (r− 1)-tuples.
Add one new vertex for each of the factors and form (r − 1)m edges by adding this vertex to each of
the (r−1)m (r−1)-tuples. The resulting linear r-graph has r(r−1)m edges and (r−1)2m+r vertices,
and it is {C1,r, C

∗
1,r}-free. Let n = (r−1)2m+ r. Then the number of edges of the constructed r-graph

is at least r(r − 1)
⌊

n−r
(r−1)2

⌋
, where r − 1 is a prime power.

In order to obtain an upper bound on exlinr (n, {C1,r, C
∗
1,r}), we generalize the result of Theorem 2 to

linear r-graphs. We present our proof of the following theorem in the next section. In the final section,
we complete the paper with a short discussion.

Theorem 3. Let G be any {C1,r, C
∗
1,r}-free linear r-graph on n vertices, and let s denote the number

of vertices with degree at least (r − 1)2 + 2. Then |E(G)| ≤ r(r−2)(n−s)
r−1 .

3 Proof of Theorem 3

For the full proof see manuscript [10].

Before we present our proof, we need some additional notation, and we prove a key lemma. Let
H be a linear r-graph, let d1 ≥ d2 ≥ . . . ≥ dr be positive integers, and let e ∈ E(H). Then we use
D(e) ≥ {d1, d2, . . . , dr} to denote that e can be written as e = {u1, u2, . . . , ur} such that d(ui) ≥ di
for each i ∈ [r] = {1, 2, . . . , r}. Here d(v) denotes the degree, i.e., the number of edges containing the
vertex v. We use the shorthand v-edge for an edge containing the vertex v.

Lemma 4. Let G be a {C1,r, C
∗
1,r}-free linear r-graph, and let e ∈ E(G) be such that D(e) ≥ {(r −

1)2 + 1, (r − 1)2 + 1, (r − 1)2, . . . , (r − 1)2}. Then

S =
⋃

f∈E(G),f∩e̸=∅

f

contains exactly (r− 1)3 + r vertices, and all vertices in S have degree at most (r− 1)2 +1. Moreover,

ES = {f : f ∈ E(G), f ∩ S ̸= ∅}

contains at most r(r − 1)2 + 1 edges.

Proof. Without loss of generality, suppose e = {u1, u2, . . . , ur} with d(u1) ≥ d(u2) ≥ (r − 1)2 + 1 and
d(ui) ≥ (r − 1)2 for each 3 ≤ i ≤ r. If d(u1) ≥ (r − 1)2 + 2, we can find a copy of C1,r in the following
way. We start with the edge e = {u1, u2, . . . , ur}. We can find a ur-edge e1 ̸= e since d(ur) ≥ (r− 1)2.
By considering i from r− 1 to 2 one by one, we can find a ui-edge er−i+1 that does not share a vertex
with any edge in {e1, e2, . . . , er−i}. Finally, we can choose a u1-edge er that does not share a vertex
with e1, e2, . . . , er−1. Hence, we have found a copy of C1,r, a contradiction.

Therefore, we have d(u1) = d(u2) = (r − 1)2 + 1. For p ∈ {u1, u2, . . . , ur}, we use G(p) to denote
the set of all vertices outside e that lie on a common edge with p. Firstly, we have the following claim.
(Due to page limitations, we omit the proofs for the following claims.)
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Claim 3.1. G(u1) = G(u2).

Similarly, we must have G(ui) ⊂ G(u2) for each 3 ≤ i ≤ r. Suppose to the contrary that there exists
some 3 ≤ i ≤ r such that there is a ui-edge ei ̸= e containing some vertex not in G(u2). Then there
are at most r− 2 u2-edges other than e intersecting ei, so there are at least (r− 2)(r− 1) + 1 u2-edges
that are disjoint from ei. By the edge conditions that d(u1) ≥ (r − 1)2 + 1 and d(us) ≥ (r − 1)2 for
each 3 ≤ s ≤ r, for each s satisfying the conditions 1 ≤ s ≤ r, s ̸= 2 and s ̸= i we can choose a
us-edge es that is disjoint from {e1, e3, . . . , es−1}, and then choose a u2-edge e2 that is disjoint from
{e1, e3, . . . , er}. So {e, e1, e2, . . . , er} forms a C1,r, a contradiction.

Thus S \ {u1, u2, . . . , ur} = G(u2) = G(u1) ⊃ G(ui) for each 3 ≤ i ≤ r. Denote by F the edge set
each edge of which is disjoint from {u1, u2, . . . , ur} and contains at least one vertex of S. It suffices to
show that F must be empty.
For this purpose, we first construct r−1 auxiliary bipartite graphs as follows. Fix an h with 2 ≤ h ≤ r,

and let Hh = (VHh
= XHh

∪ YHh
, EHh

), where XHh
= {ei|uh ∈ ei, ei ̸= e}, YHh

= {ej |u1 ∈ ej , ej ̸= e}
and EHh

= {{ei, ej}|ei ∩ ej ̸= ∅}. Then H2 is an (r − 1)-regular bipartite graph with partition classes
of exactly (r − 1)2 vertices. For 3 ≤ h ≤ r, Hh is a bipartite graph with one class of exactly (r − 1)2

vertices and the other class having at least (r − 1)2 − 1 vertices. Next, we prove two claims on the
structure of these bipartite graphs.

Claim 3.2. If G is C1,r-free, then H2 must contain a Kr−1,r−1.

Claim 3.3. If G is C1,r-free, then Hh must contain a Kr−2,r−1 for each 2 ≤ h ≤ r. Furthermore, the
partition classes on r − 1 vertices in these Kr−2,r−1’s are mutually disjoint.

Let {e1, e2, . . . , e(r−1)2} denote the ordered sequence of all u1-edges except for e. Without loss of
generality, we assume that Hh contains the (h − 1)-th r − 1 u1-edges of this sequence for 2 ≤ h ≤ r.
That means Hh contains e(h−2)(r−1)+1, e(h−2)(r−1)+2, . . . , e(h−1)(r−1) for each 2 ≤ h ≤ r. Denote by
Uh−1 the set of vertices in the (h−1)-th r−1 u1-edges of the sequence for 2 ≤ h ≤ r. We have another
claim.

Claim 3.4. Fix 2 ≤ i ≤ r. Each ui-edge contains only vertices of one vertex set from {U1, U2, . . . , Ur−1}.

Before we continue with the proof of Lemma 4, we note that the above analysis implies the following
about the structure of Hi.

Remarks 3.1. H2 is the disjoint union of r − 1 complete bipartite graphs Kr−1,r−1. Since d(uh) ≥
(r− 1)2 for each 3 ≤ h ≤ r, Hh is either the disjoint union of r− 1 complete bipartite graphs Kr−1,r−1

or the disjoint union of r − 2 complete bipartite graphs Kr−1,r−1 and one complete bipartite graph
Kr−2,r−1.

As a consequence of Remarks 3.1, for each 1 ≤ i ≤ r − 1 there exist r − 1 u2-edges whose vertices
except for u2 are in Ui. Fix h with 3 ≤ h ≤ r. There exists at most one s with 1 ≤ s ≤ r− 1 such that
there exist r − 2 uh-edges whose vertices except for uh are in Us. For each 1 ≤ i ̸= s ≤ r − 1, there
exist r − 1 uh-edges whose vertices except for uh are in Ui.
Now we are ready to prove the statement about F . If F is not an empty set, we let f be an edge

of F . There must exist an s with 1 ≤ s ≤ r − 1 such that |f ∩ Us| ≥ 1. Let v ∈ f ∩ Us. We choose a
u1-edge g containing v. By Remarks 3.1, there exist r − 2 ut-edges g1, g2, . . . , gr−2 with the property
that each of them is disjoint from f and each of them intersects g. And there must exist another
u1-edge g′ whose vertices except for u1 are in Ut for some 1 ≤ t ̸= s ≤ r − 1 such that g′ is disjoint
from f . Now the edges f, g, g′, g1, g2, . . . , gr−2 constitute a C∗

1,r, a contradiction. This completes the
proof of Lemma 4.

Now we are ready to prove Theorem 3. Suppose to the contrary that G is a smallest (in terms of

the number of vertices n) {C1,r, C
∗
1,r}-free linear r-graph such that G has more than r(r−2)(n−s)

r−1 edges.

For each v ∈ V (G), we define I(v) = 1 if d(v) ≤ (r − 1)2 + 1, and I(v) = 0 otherwise.
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We adopt the following useful observation from [9].∑
e∈E(G)

∑
v∈V (G),v∈e

I(v)

d(v)
=

∑
v∈V (G)

∑
e∈E(G),v∈e

I(v)

d(v)
=

∑
v∈V (G)

I(v) = n− s.

Since |E(G)| > r(r−2)(n−s)
r−1 , there must exist an edge e = {u1, u2, . . . , ur} such that∑

1≤i≤r

I(ui)

d(ui)
<

r − 1

r(r − 2)
=

r − 1

(r − 1)2 − 1
. (1)

Without loss of generality, we assume d(u1) ≥ d(u2) ≥ . . . ≥ d(ur). Note that d(ur) ≥ r − 1 and
d(u2) ≥ (r− 1)2, as otherwise (1) would be violated. We can also deduce that d(ui) ≥ (r− i)(r− 1)+2
for all 3 ≤ i ≤ r− 1, as otherwise (1) would be violated. If d(u1) ≥ (r− 1)2+2, then we can easily find
a C1,r in the following way. We start with the edge e = (u1, u2, . . . , ur). We can find a ur-edge e1 ̸= e
since d(ur) ≥ 2. By considering i from r − 1 to 2 one by one, we can find a ui-edge er−i+1 that does
not share a vertex with any edge in {e1, e2, . . . , er−i}. Finally, we can choose a u1-edge er that does
not share a vertex with {e1, e2, . . . , er−1}, a contradiction. Therefore, we have d(u1) ≤ (r − 1)2 + 1.
By (1), we have d(u1) = d(u2) = (r − 1)2 + 1 and d(ui) ≥ (r − 1)2 for each 3 ≤ i ≤ r. Thus,
D(e) ≥ {(r − 1)2 + 1, (r − 1)2 + 1, (r − 1)2, . . . , (r − 1)2}.
Now we define S and ES as in Lemma 4. Let G− S be the linear r-graph obtained by deleting the

vertices of S and the edges of ES . By Lemma 4, G − S has n′ = n − ((r − 1)3 + r) vertices and at
least |E(G)| − (r(r − 1)2 + 1) edges. Furthermore, the number of vertices in G − S of degree at least
(r − 1)2 + 2 is exactly s. Therefore, we have

|E(G− S)| ≥ |E(G)| − (r(r − 1)2 + 1) >
r(r − 2)(n− s)

r − 1
− (r(r − 1)2 + 1) >

r(r − 2)(n′ − s)

r − 1
,

which contradicts the assumption that G is a smallest counterexample to Theorem 3.
This completes the proof.
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