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Abstract

In this work, we explore when the Betti numbers of the coordinate rings of a projective monomial
curve and one of its affine charts are identical. Given an infinite field k and a sequence of relatively
prime integers a0 = 0 < a1 < · · · < an = d, we consider the projective monomial curve C ⊂ Pn

k of
degree d parametrically defined by xi = uaivd−ai for all i ∈ {0, . . . , n} and its coordinate ring k[C].
The curve C1 ⊂ An

k with parametric equations xi = tai for i ∈ {1, . . . , n} is an affine chart of C and
we denote by k[C1] its coordinate ring. The main contribution of this paper is the introduction of
a novel (Gröbner-free) combinatorial criterion that provides a sufficient condition for the equality
of the Betti numbers of k[C] and k[C1]. Leveraging this criterion, we identify infinite families of
projective curves satisfying this property.

Introduction

Let k be an infinite field, and k[x] := k[x1, . . . , xn] and k[t] := k[t1, . . . , tm] be two polynomial rings
over k. Given B = {b1, . . . , bn} ⊂ Nm, a set of nonzero vectors, each element bi = (bi1, . . . , bim) ∈ Nm

corresponds to the monomial tbi := tbi11 · · · tbimm ∈ k[t]. The affine toric variety XB ⊂ An
k determined by

B is the Zariski closure of the set given parametrically by xi = ubi11 · · ·ubimm for all i = 1, . . . , n. Consider

SB := ⟨b1, . . . , bn⟩ = {α1b1 + · · ·+ αnbn |α1, . . . , αn ∈ N} ⊂ Nm ,

the affine monoid spanned by B. The toric ideal determined by B is the kernel IB of the k-algebra
homomorphism φB : k[x] −→ k[t] induced by xi 7→ tbi . Since k is infinite, one has that IB is the
vanishing ideal of XB and, hence, the coordinate ring of XB is (isomorphic to) the semigroup algebra
k[SB] := Im(φB) ≃ k[x]/IB. The ideal IB is an SB-homogeneous binomial ideal, i.e., if one sets the
SB-degree of a monomial xα ∈ k[x] as degSB(x

α) := α1b1 + · · · + αnbn ∈ SB, then IB is generated by
SB-homogeneous binomials. One can thus consider a minimal SB-graded free resolution of k[SB] as
SB-graded k[x]-module,

F : 0 −→ Fp −→ · · · −→ F0 −→ k[SB] −→ 0 .

The projective dimension of k[SB] is pd(k[SB]) = max{i |Fi ̸= 0}. The i-th Betti number of k[SB]
is the rank of the free module Fi, i.e., βi(k[SB]) = rank(Fi); and the Betti sequence of k[SB] is
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(βi(k[SB]) ; 0 ≤ i ≤ pd(k[SB])). When the Krull dimension of k[SB] coincides with its depth as k[x]-
module, the ring k[SB] is said to be Cohen-Macaulay. By the Auslander-Buchsbaum formula, this
is equivalent to pd(k[SB]) = n − dim(k[SB]). When k[SB] is Cohen-Macaulay, its (Cohen-Macaulay)
type is the rank of the last nonzero module in the resolution, i.e., type(k[SB]) := βp(k[SB]) where
p = pd(k[SB]).

Now consider d ∈ Z+ and a0 := 0 < a1 < · · · < an = d a sequence of relatively prime integers.
Denote by C the projective monomial curve C ⊂ Pn

k of degree d parametrically defined by xi = uaivd−ai

for all i ∈ {0, . . . , n}, i.e., C is the Zariski closure of

{(ua0vd−a0 : · · · : uaivd−ai : · · · : uanvd−an) ∈ Pn
k | (u : v) ∈ P1

k}.

Taking A = {a0, . . . ,an} ⊂ N2 with ai = (ai, d − ai) for all i = 0, . . . , n, one has that IA is the
vanishing ideal of C, and the coordinate ring of C is the two-dimensional ring k[C] = k[x0, . . . , xn]/IA,
where S = SA denotes the monoid spanned by A. The projective monomial curve C is said to be
arithmetically Cohen-Macaulay if the ring k[C] is Cohen-Macaulay.

The monomial projective curve C has two affine charts, C1 = {(ua1 , . . . , uan) ∈ An
k |u ∈ k} and

C2 = {(vd−a0 , vd−a1 , . . . , vd−an−1) ∈ An
k | v ∈ k}, associated to the sequences a1 < · · · < an and

d−an−1 < · · · < d−a1 < d−a0, respectively. The second sequence is sometimes called the dual of the
first one. Denote by S1 := SA1 the numerical semigroup generated by A1 = {a1, . . . , an}. The vanish-
ing ideal of C1 is IA1 ⊂ k[x1, . . . , xn], and hence, its coordinate ring is the one-dimensional ring k[C1] =
k[x1, . . . , xn]/IA1 . Moreover, IA is the homogenization of IA1 with respect to the variable x0. Similarly,
denoting by S2 := SA2 the numerical semigroup generated by A2 := {d− a0, d− a1, . . . , d− an−1}, the
vanishing ideal of C2 is IA2 ⊂ k[x0, . . . , xn−1], its coordinate ring is k[C2] = k[x0, . . . , xn−1]/IA2 , and IA
is the homogenization of IA2 with respect to xn.

One has that βi(k[C]) ≥ βi(k[C1]) for all i, and the goal of this work is to understand when the
Betti sequences of k[C] and k[C1] coincide. A necessary condition is that k[C] is Cohen-Macaulay.
Indeed, affine monomial curves are always arithmetically Cohen-Macaulay while projective ones may
be arithmetically Cohen-Macaulay or not. Thus, pd(k[C]) = pd(k[C1]) if and only if C is arithmetically
Cohen-Macaulay. In Theorem 5, which is the main result of this work, we provide a combinatorial
sufficient condition for having equality between the Betti sequences of k[C] and k[C1] by means of the
poset structures induced by S and S1 on the Apery sets of both S and S1. In Propositions 9 and 11,
we use our main result to provide explicit families of curves where βi(k[C]) = βi(k[C1]) for all i.

The motivation of this work comes from [7], where the authors obtain a sufficient condition in terms
of Gröbner bases to ensure the equality of the Betti sequences.
The computations in the examples given in this paper are performed using Singular [4].

1 Apery sets and their poset structure

Let d ∈ Z+ and a0 := 0 < a1 < · · · < an = d be a sequence of relatively prime integers. For
each i = 0, . . . , n, set ai := (ai, d − ai) ∈ N2, and consider the three sets A1 = {a1, . . . , an},
A2 = {d, d − a1, . . . , d − an−1} and A = {a0, . . . ,an} ⊂ N2. We denote by C ⊂ Pn

k the projective
monomial curve defined by A as defined in the introduction, and by C1 and C2 its affine charts. Con-
sider S1 and S2 the numerical semigroups generated by A1 and A2 respectively, and S the monoid
spanned by A that we call the homogenization of S1 (with respect to d).

As already mentioned, k[S1] and k[S2] are always Cohen-Macaulay, while k[C] can be Cohen-
Macaulay or not. There are many ways to determine when a projective monomial curve is arith-
metically Cohen-Macaulay; see, e.g., [2, Cor. 4.2], [3, Lem. 4.3, Thm. 4.6] or [6, Thm. 2.6]. We give
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some of them in Proposition 1, but let us previously recall the notion of Apery set since it is involved
in some of those charaterizations.

For i = 1, 2, the Apery set of Si with respect to d is Api := {y ∈ Si | y− d /∈ Si}. Since gcd(A1) = 1,
we know that Api is a complete set of residues modulo d, i.e., Ap1 = {r0 = 0, r1, . . . , rd−1} and
Ap2 = {t0 = 0, t1, . . . , td−1} for some positive integers ri and ti such that ri ≡ ti ≡ i (mod d) for all
i = 1, . . . , d − 1. One can also define the Apery set of S as APS := {y ∈ S |y − a0 /∈ S,y − an /∈ S}.
Note that this set has at least d elements by [5, Lem. 2.5].

Proposition 1. The following assertions are equivalent:

(a) C is arithmetically Cohen-Macaulay.

(b) APS has exactly d elements.

(c) APS = {(0, 0)} ∪ {(ri, td−i) | 1 ≤ i < d}.
(d) For all i = 1, . . . , d − 1, (ri, td−i) ∈ S. In other words, if q1 ∈ Ap1, q2 ∈ Ap2 and q1 + q2 ≡ 0

(mod d), then (q1, q2) ∈ S.
(e) If s ∈ Z2 satisfies s+ a0 ∈ S and s+ an ∈ S, then s ∈ S.

In order to compare βi(k[C]) and βi(k[C1]) for all i, we will relate in Theorem 5 the Apery sets
Ap1 and APS with the natural poset structure that both have and that we now define. For i = 1, 2,
(Api,≤i) is a poset, where ≤i is given by y ≤i z ⇐⇒ z − y ∈ Si. Similarly, (APS ,≤S) is a poset for
≤S defined by y ≤S z ⇐⇒ z− y ∈ S.

Since S ⊂ S1 × S2, it follows that if (y1, y2) ≤S (z1, z2), then yi ≤i zi for i = 1, 2. Using Proposition
1, one can prove that the poset structure of (APS ,≤S) is completely determined by those of (Ap1,≤1)
and (Ap2,≤2) when C is arithmetically Cohen-Macaulay.

Proposition 2. If C is arithmetically Cohen-Macaulay, then for all (y1, y2), (z1, z2) ∈ APS ,

(y1, y2) ≤S (z1, z2) ⇐⇒ y1 ≤1 z1 and y2 ≤2 z2.

Let us recall some notions about posets that will be needed in the sequel.

Definition 3. Let (P,≤) be a finite poset.

(a) For y, z ∈ P , we say that z covers y, and denote it by y ≺ z, if y < z and there is no w ∈ P such
that y < w < z.

(b) We say that P is graded if there exists a function ρ : P → N, called rank function, such that
ρ(z) = ρ(y) + 1 whenever y ≺ z.

As the following result shows, the poset (APS ,≤S) is always graded. Since (Ap1,≤1) has a minimum,
whenever it is graded, the corresponding rank function is completely determined by the value of the
rank function in the minimum, which we will fix to be 0. In the following proposition, we characterize
the covering relation in Ap1 and APS and describe the rank functions of (APS ,≤S), and of (Ap1,≤1)
when it is graded.

Proposition 4. (a) If y, z ∈ Ap1, then y ≺1 z if and only if z = y + ai for some minimal generator
ai of S1 such that ai ̸= d. Therefore, if Ap1 is graded and ρ1 : Ap1 → N denotes the rank
function, for any y ∈ Ap1, ρ1(y) is the number of elements involved in any writing of y in terms
of minimal generators of S1.

(b) If y = (y1, y2), z = (z1, z2) and y, z ∈ APS , then y ≺S z if and only if z = y + ai for some
i ∈ {1, . . . , n − 1}. Therefore, APS is graded by the rank function ρ : APS → N defined by
ρ(y1, y2) := (y1 + y2)/d.
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2 Betti numbers of affine and projective monomial curves

Recall that IA1 ⊂ k[x1, . . . , xn] is the vanishing ideal of C1 and IA ⊂ k[x0, . . . , xn] is the vanishing ideal
of C. When C is arithmetically Cohen-Macaulay, pd(k[C]) = pd(k[C1]). Moreover, by Proposition 1,
in this case, one has that |APS | = |Ap1| = d. The main result in this section is Theorem 5 where we
give a sufficient condition in terms of the poset structures of the Apery sets Ap1 and APS for the Betti
sequences of k[C1] and k[C] to coincide.

Theorem 5. If (APS ,≤S) ≃ (Ap1,≤1), then βi(k[C]) = βi(k[C1]) for all i.

Note that the converse of this result is far from being true, as shown in Example 6.

Example 6. For the sequence 1 < 2 < 4 < 8, one has that both k[C1] and k[C] are complete intersections
with Betti sequence (1, 3, 3, 1). However, the posets (Ap1,≤1) and (APS ,≤S) are not isomorphic since
≤1 is a total order on Ap1, while ≤S is not.

In order to compare the two posets APS and Ap1, one can use the following result.

Proposition 7. The following two claims are equivalent:

(a) The posets (Ap1,≤1) and (APS ,≤S) are isomorphic;

(b) k[C] is Cohen-Macaulay, (Ap1,≤1) is graded, and {a1, . . . , an−1} is contained in the minimal
system of generators of S1.

Note that Ap1 can be a graded poset even if (Ap1,≤1) and (APS ,≤S) are not isomorphic as the
following example shows.

Example 8. For the sequence a1 = 5 < a2 = 11 < a3 = 13, the Apery set of the numerical semigroup
S1 = ⟨a1, a2, a3⟩ is Ap1 = {0, 27, 15, 16, 30, 5, 32, 20, 21, 22, 10, 11, 25}. This Apery set is graded with
the rank function ρ1 : S1 → N defined below (see Figure 1):

• ρ1(0) = 0,

• ρ1(5) = ρ(11) = 1,

• ρ1(10) = ρ1(16) = ρ1(22) = 2,

• ρ1(15) = ρ1(21) = ρ1(27) = 3,

• ρ1(20) = ρ1(32) = 4,

• ρ1(25) = 5,

• ρ1(30) = 6.

Moreover, since APS has 16 elements, k[C] is not Cohen-Macaulay, and hence (Ap1,≤1) and (APS ,≤S)
are not isomorphic by Proposition 7.

3 Examples of application

In Propositions 9 and 11, we provide some sequences a1 < · · · < an for which the condition in Theorem
5 is satisfied. Let us start with arithmetic sequences, i.e., sequences a1 < · · · < an such that ai =
a1+(i− 1)e for some positive integer e with gcd(a1, e) = 1. For this family, we refine [7, Cor. 4.2] that
considers a1 > n− 1.

Proposition 9. Let a1 < . . . < an be an arithmetic sequence of relatively prime integers. Then,
(APS ,≤S) ≃ (Ap1,≤1) if and only if a1 > n− 2. Therefore, if a1 > n− 2, the Betti sequences of k[C1]
and k[C] coincide.
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(22, 4)

(27, 12)

(32, 20)

(11, 2)

(16, 10)

(21, 18)

(0, 0)

(5, 8)

(10, 16)

(15, 24)

(20, 32)

(25, 40)

(30, 48)

(33, 6)

(38, 14)

(43, 22)

Figure 1: The posets (Ap1,≤1) (in blue) and (APS ,≤S) (in black) for S1 = ⟨5, 11, 13⟩.

(0, 0)

(5, 5) (6, 4) (7, 3) (8, 2) (9, 1)

(14, 6)(13, 7)(12, 8)(11, 9)

Figure 2: The posets (Ap1,≤1) (in blue) and (APS ,≤S) (in black) for S1 = ⟨5, 6, 7, 8, 9, 10⟩.
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Example 10. For the sequence 5 < 6 < 7 < 8 < 9 < 10, one has that a1 = 5 > 4 = n− 2. Therefore,
the Apery sets (Ap1,≤1) and (APS ,≤S) are isomorphic. Hence, by Theorem 5, the Betti sequences
of k[C1] and k[C] coincide. One can check that both are (1, 11, 30, 35, 19, 4). The posets (Ap1,≤1) and
(APS ,≤S) in this example are shown in Figure 2.

In [1, Sect. 6], the authors studied the canonical projections of the projective monomial curve C
defined by an arithmetic sequence a1 < · · · < an of relatively prime integers, i.e., the curve πr(C)
obtained as the Zariski closure of the image of C under the r-th canonical projection πr : Pn

k 99K Pn−1
k ,

(p0 : · · · : pn) 799K (p0 : · · · : pr−1 : pr+1 : · · · : pn). We know that πr(C) is the projective monomial
curve associated to the sequence a1 < · · · < ar−1 < ar+1 < · · · < an.

In Proposition 11, for any r ∈ {2, . . . , n − 1}, we consider A1 = {a1, . . . , an} \ {ar}, the numerical
semigroup S1 = SA1 , and its homogenization S, and we characterize when the posets (Ap1,≤1) and
(APS ,≤S) are isomorphic.

Proposition 11. Consider a1 < . . . < an an arithmetic sequence of relatively prime integers with
n ≥ 4, and take r ∈ {2, . . . , n − 1}. Set A1 := {a1, . . . , an} \ {ar}, and let S1 be the numerical
semigroup generated by A1, and S its homogenization. Then,

(APS ,≤S) ≃ (Ap1,≤1) ⇐⇒


a1 > n− 2 and a1 ̸= n, if r = 2,

a1 ≥ n and r ≤ a1 − n+ 1, if 3 ≤ r ≤ n− 2,

a1 ≥ n− 2, if r = n− 1.

Consequently, if the previous condition holds, then βi(k[C1]) = βi(k[C]), for all i.

Example 12. For the sequence 9 < 10 < 11 < 12 < 13, the Betti sequences of k[C1] and k[C] coincide
by Proposition 9. Indeed, it is (1, 10, 20, 15, 4) for both curves. The parameters of this arithmetic
sequence are a1 = 9, e = 1 and n = 5. Hence, the Betti sequences of k[πr(C1)] and k[πr(C)] coincide
for r = 2, 3, 4 by Proposition 11. One can check that the Betti sequence of k[π2(C)] and k[π4(C)] is
(1, 5, 6, 2), and the Betti sequence of k[π3(C)] is (1, 8, 12, 5).
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[1] I. Bermejo, E. Garćıa-Llorente, I. Garćıa-Marco, and M. Morales. Noether resolutions in dimension 2. J.
Algebra 482 (2017), 398-426.

[2] A. Campillo and P. Gimenez, Syzygies of affine toric varieties, J. Algebra 225 (2000), 142–161.

[3] M. P. Cavaliere and G. Niesi, On monomial curves and Cohen-Macaulay type, Manuscripta Math. 42 (1983),
147–159.

[4] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4-3-0 — A computer algebra system for
polynomial computations. http://www.singular.uni-kl.de, 2022.
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