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Abstract

In this paper, we explore the geometry and the arithmetic of a family of polytopal sphere packings
induced by regular polytopes in any dimension. We prove that every integral polytope is crystallo-
graphic and we show that there are 11 crystallographic regular polytopes in any dimension. After
introducing the notion of Apollonian section, we determine which Platonic crystallographic packings
emerge as cross sections of the Apollonian arrangements of the regular 4-polytopes. Additionally,
we compute the Möbius spectrum of every regular polytope.

1 Introduction

Apollonian circle packings and their generalizations are currently active areas of research in geometric
number theory [9, 10, 2]. In dimension 2, some variants of integral Apollonian packings have been
explored by substituting the building block with a different circle packing modeled on a polyhedron [8,
22, 23, 3, 5, 14]. While every polyhedron can be employed to construct a packing, not all of them admit
an integral structure like the Apollonian one. A fundamental question regarding the determination of
which polyhedra are integral in this sense is still wide open [12, 5].

Similarly, in dimension 3, a family of crystallographic/Apollonian-like sphere packings arise by it-
eratively reflecting an initial sphere packing modeled on a 4-polytope as in Figure 1. Integral crys-
tallographic packings modeled on the 4-simplex [20, 11] and the 4-cross polytope [13, 7, 19, 16] have
been extensively studied. Unlike polyhedra, not every 4-polytope is crystallographic, in the sense that
it serves as a suitable model for a crystallographic packing. In this paper, we delve into the crystallog-
raphy and the integrality of regular polytopes in any dimension.

Figure 1: An integral hypercubic crystallographic packing after 0, 1, 2 and 3 iterations. The labels
are the bends (reciprocal of the radii) of the spheres.

∗The full version of this work can be found in [18], which is a recent update of a previous preprint including some
partial results of this version. This work is currently under review and it is partially contained in the PhD thesis of the
author [17]. This research is supported by the CNRS and the Austrian Science Fund FWF projects F-5503 and P-34763

†Email: ivan.rasskin@lis-lab.fr. Research of I. R. supported by the CNRS



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

2 Preliminaries on sphere packings and edge-scribable polytopes

An oriented hypersphere, or simply sphere, of R̂d := Rd ∪ {∞}, is the image of a spherical cap of Sd

under the stereographic projection. Every sphere S is uniquely defined by its center c ∈ R̂d and its
bend b ∈ R (the recripocal of the oriented radius), or if S is a half-space, by its normal vector n̂ ∈ Sd−1

pointing to the interior and the signed distance δ ∈ R between its boundary and the origin. The
inversive coordinates of S are represented by the (d+ 2)-dimensional real vector

i(S) =


(
bc,

b− b

2
,
b+ b

2

)T

if b ̸= 0,

(n̂, δ, δ)T otherwise

(1)

where b = b∥c∥2 − 1
b is the co-bend of S. The co-bend is the bend of S after inversion through the unit

sphere. The inversive product of two spheres S, S′ of R̂d is the real value

⟨S, S′⟩ = i(S)TQd+2i(S) (2)

where Qd+2 is the diagonal matrix diag(1, . . . , 1,−1) of size d+ 2. The inversive product encodes the
relative position of two spheres S and S′ according to the following criteria:

⟨S, S′⟩


< −1 if S ∩ S′ = ∅,
= −1 if ∂S and ∂S′ are tangent and int(S) ∩ int(S′) = ∅,
= 1 if ∂S and ∂S′ are tangent and S ⊆ S′ or S′ ⊆ S,

> 1 if ∂S ∩ ∂S′ = ∅ and S ⊂ S′ or S′ ⊂ S.

(3)

An arrangement of spheres S in R̂d, possible infinite, is a packing if their interiors are mutually disjoint.

The group of Möbius transformations of R̂d preserves the inversive product and acts linearly on the
inversive coordinates as an orthogonal subgroup of SLd+2(R) with respect to Qd+2.

For every d ≥ 1, we denote the polar of a subset X ⊂ Rd by X∗ = {u ∈ Rd | ⟨u, v⟩ ≤ 1 for all v ∈ X}.
The stereographic sphere of a point v ∈ Rd outside Sd−1 (i.e. with ∥v∥ > 1) is the sphere Sv of R̂d−1

obtained by the stereographic projection of the spherical cap {−v}∗∩Sd−1. For any d-polytope P with
vertices outside the unit sphere, the (sphere) arrangement projection of P is defined as the arrangement
SP of the stereographic spheres of the vertices of P.

A d-polytope is termed edge-scribed if its edges are tangent to the unit sphere [6]. If, in addition,
the barycenter of the contact points is the origin, it is referred to as canonical [24]. A d-polytope is
considered edge-scribable if it admits an edge-scribed realization [6]. In dimension d ≥ 3, all the edge-
scribed realizations of an edge-scribable d-polytope P are equivalent up to Möbius transformations to
a unique canonical realization P0 (see [21, 14] for more details).

The arrangement projection of an edge-scribed polytope is a packing. Reciprocally, we say that a

sphere packing SP in R̂d with d ≥ 2, is polytopal if there is an edge-scribable (d + 1)-polytope P and
a Möbius transformation µ such that SP = µ · SP0 . The combinatorial structure of SP is encoded by
the corresponding edge-scribable polytope P. The vertices and the edges of P are in bijection to the
spheres and the tangency relations of SP . The facets of P correspond to the dual spheres of SP which
are the spheres forming the dual arrangement S∗

P := µ · SP∗
0
. The Apollonian arrangement of SP is

defined as the orbit space P(SP) := ⟨S∗
P⟩ · SP where ⟨S∗

P⟩ denotes the group generated by inversions
through the dual spheres. We denote by P{p1,...,pd} the Apollonian arrangement of a regular polytope
with Schläfli symbol {p1, . . . , pd}.
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2.1 Crystallographic polytopes

In dimension 2, the Apollonian arrangements of 3-polytopes are packings, but this is not true in
general [14]. In higher dimensions, Apollonian arrangements which are packings belong to the family
of crystallographic sphere packings introduced by Kontorovich and Nakamura in [12]. These are dense
infinite sphere packings obtained as the orbit space P = ⟨S̃⟩·S, where S is a finite sphere packing called
the cluster, ⟨S̃⟩ is a geometrically finite subgroup of the group of Möbius transformations generated
by the inversions through a finite arrangement of spheres S̃, called the co-cluster, satisfying that every
sphere of S is disjoint, tangent or orthogonal to every sphere of S̃.

Definition 1. For every d ≥ 3, an edge-scribable d-polytope P is crystallographic if any Apollonian
arrangement P(SP) = ⟨S∗

P⟩ · SP is a sphere packing in dimension d− 1.

Crystallographic polytopes exist only in dimension 3 ≤ d ≤ 19 [2]. From a Boyd’s remark in [4],
we have that an edge-scribable polytope P is crystallographic when the dihedral angles of P, viewed
as an hyperideal hyperbolic polytope, satisfy the crystallographic restriction. This restriction dictates
that the periode of every rotation obtained as the product of two reflections through the facets is
either 2, 3, 4, 6,∞, imposing a condition on the dihedral angles. On the other hand, the dihedral angle
α of two adjacents facets f and f ′ of P is equal to the intersection angle of the corresponding dual
spheres of Sf , Sf ′ ∈ S∗

P , as defined in [15]. This angle can be computed from their inversive product
by ⟨Sf , Sf ′⟩ = cos(α). Therefore, the crystallographic restriction can be reformuled in terms of the
inversive product of the dual spheres, as described in Lemma 2.

Lemma 2. For any d ≥ 3, an edge-scribable d-polytope P is crystallographic if and only if for any two

dual spheres Sf , Sf ′ of a polytopal sphere packing SP , we have |⟨Sf , Sf ′⟩| ∈ {0, 12 ,
√
2
2 ,

√
3
2 } ∪ [1,∞).

2.2 Integral polytopes

In [12], Kontorovich and Nakamura defined a 3-polytope P to be integral1 if there is a crystallographic
circle packing modeled on P where the bends of the spheres are all integers. The fundamental question
regarding the determination of which 3-polytopes are integral is still wide open. In [5], Chait-Roth,
Cui, and Stier studied the integral 3-polytopes with few vertices. Based on previous works of Nakamura
and Kontorovich, they gave the following enumeration of the integral uniform 3-polytopes.

Theorem 3 (Th. 26 [5]). There are only 8 integral uniform 3-polytopes: the tetrahedron, the octahe-
dron, the cube, the cuboctahedron, the truncated tetrahedron, the truncated octahedron, the 3-prism and
the 6-prism.

In higher dimensions, the previous definition of integral 3-polytope can be naturally extended for
any edge-scribable polytope.

Definition 4. For any d ≥ 3, an edge-scribable d-polytope P is integral if it admits an Apollonian
arrangement P(SP) where the bends of the spheres are in Z.

A priori, an edge-scribable polytope might be integral and non-crystallographic, meaning that it
could admit an Apollonian arrangement where the bends of the spheres are integers and the spheres
overlap. Indeed, this is the case if we adapt the definition of integral polytope for number rings other
than Z. For instance, the 600-cell is integral in Z[φ], but is not crystallographic (see Figure 2).

1This definition of integral polytope differs from the one commonly employed in combinatorics, which involves polytopes
with integer vertex coordinates, also known as lattice polytopes.
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Figure 2: (Left) A polytopal sphere packing modeled on the 600-cell labelled with the bends; (right)
the first reflections of its Apollonian arrangement which is integral in Z[φ] and is not a packing.

3 Main results

3.1 The relation between crystallography and integrality

In this paper, we prove the following condition for determining the integrality of edge-scribable poly-
topes.

Lemma 5. For any d ≥ 3, if an edge-scribable d-polytope P is integral, then for any two dual spheres

Sf , Sf ′ of any polytopal sphere packing SP , we have |⟨Sf , Sf ′⟩| ∈ {
√
n
2 |n ∈ N}.

With this lemma we can easily identify a mistake in the list of the integral uniform 3-polytopes of
Chait-Roth, Cuit and Stier (Th. 3): the 6-prism is not integral, since it contains two dual spheres whose

inversive product is −5/3 ̸∈ {±
√
n
2 }n∈N. Another straightforward consequence follows from Lemmas 2

and 5, and gives us the relation between crystallographic and integral polytopes in higher dimensions.

Theorem 6. Every integral polytope is crystallographic.

In the case of regular polytopes, we have the following.

Theorem 7. For every d ≥ 3, the only crystallographic regular d-polytopes are:

(d = 3) the five Platonic solids,

(d = 4) all the regular 4-polytopes except the 600-cell,

(d = 6) the 6-cross polytope.

Moreover, all these are integral except the icosahedron, the dodecahedron and the 120-cell which are
integral in Z[φ].

3.2 Apollonian sections

The study of cross-sections is a classic approach for extracting patterns of crystallographic sphere
packings [4, 1]. In this paper, we introduce an algebraic tool called Apollonian section which proves to
be useful for identifing which Platonic crystallographic circle packings emerge as cross-sections of the
Apollonian arrangements of the regular 4-polytopes.
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Theorem 8. There are the following relations between the Apollonian arrangements of the regular
d-polytopes for d = 3, 4:

P{3,3} ⊂ P{3,3,3},

P{3,3},P{3,4},P{4,3} ⊂ P{3,3,4},

P{4,3} ⊂ P{4,3,3},

P{3,4},P{4,3} ⊂ P{3,4,3},

P{3,3},P{3,5} ⊂ P{3,3,5},

P{5,3} ⊂ P{5,3,3},

(4)

where “P{p,q} ⊂ P{r,s,t}” means that P{p,q} can be obtained as a cross-section of P{r,s,t}.

Some of these cross-sections have been used as a geometric framework for obtaining results in geo-
metric knot theory, as discussed in [16]. Another important feature of this approach is that it enable
us to determine whether a cross-section preserves integrality.

Corollary 9. Every integral Platonic crystallographic circle packing can be obtained as a cross-section
of an integral regular crystallographic sphere packing.
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Figure 3: (Left) An integral octahedral crystallographic circle packing P{3,4} obtained as a cross-
section (right) of an integral orthoplicial crystallographic sphere packing P{3,3,4} (center).

3.3 The Möbius spectrum of the regular polytopes

In [14], Ramı́rez Alfonśın and the author introduced a spectral invariant of every edge-scribable d-
polytope P with d ≥ 3 called the Möbius spectrum M(P). This is defined as the multiset of the
eigenvalues of the Gramian of any polytopal sphere packing SP . Due to the Möbius uniqueness of
edge-scribable polytopes, M(P) does not depend on the packing. It is currently unknown whether
there exist two combinatorially different edge-scribable polytopes with the same Möbius spectrum. In
this paper, we compute the Möbius spectrum of every regular polytope P in terms of the number of
vertices and another geometric invariant called the canonical length ℓP , defined as half the edge-length
of a canonical realization of P.

Theorem 10. For any d ≥ 3, the Möbius spectrum of every regular d-polytope P with n vertices is

M(P) = (−nℓ−2
P ,

n

d
(1 + ℓ−2

P )(d), 0(n−d−1)). (5)
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