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Abstract

A separating system of graph G is a family F of subgraphs of G such that, for all distinct edges
e, f ∈ E(G), some element in F contains e but not f . Recently, it has been shown that every
n-vertex graph admits a separating system of paths of size O(n) [Separating the edges of a graph
by a linear number of paths, M. Bonamy, F. Botler, F. Dross, T. Naia, J. Skokan. Advances in
Combinatorics, October 2023]. This result improved an almost linear bound of O(n log⋆ n) found
by Letzter in 2022, and settled a conjecture independently posed by Balogh, Csaba, Martin, and
Pluhár and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan. We extend this result,
showing that every n-vertex graph admits a separating system consisting of O(n) edges and cycles.

1 Introduction

Given a set Ω and a family F ∈ 2Ω of subsets of Ω, we say that F separates Ω if for all distinct ω, ρ ∈ Ω
there exist Aω, Aρ ∈ F such that Aω ∩ {ω, ρ} = {ω} and Aρ ∩ {ω, ρ} = {ρ}. The study of separating
systems dates back to the work of Rényi in 1961 [9]. The particular setting where Ω = E(G) is the
edge set of a graph G and only certain subgraphs are allowed in F has also been investigated multiple
times in the Computer Science literature, in the context of fault detection in networks (see, e.g., [5, 6]
and the references therein). A generic problem in the area is the following.

Question 1. Let G be a (possibly infinite) family of graphs, and let H be an n-vertex graph. What is
the smallest size of a collection F ⊆ G of H-subgraphs such that {E(H) : H ∈ F} separates E(H) ?

A separating system of a graph G is a collection of G-subgraphs such that their edge sets sepa-
rate E(G). Recently, Bonamy, Dross, Skokan and the two authors showed that every n-vertex graph ad-
mits a separating system consisting of at most 19n paths [2], improving a previous bound of O(n log⋆ n)
found by Letzter in 2022 [7], and settling a conjecture independently posed by Balogh, Csaba, Martin,
and Pluhár [1] and by Falgas-Ravry, Kittipassorn, Korándi, Letzter, and Narayanan [4].

A natural follow-up question is to ask whether every graph G admits a cycle separating system of
size O

(
|V (G)|), that is, a collection of cycles and edges of G which separate E(G). (Note that cycles

alone are not enough in general, since G might contain a cycle-free component.) This question was
independently posed by Girão and Pavez-Signé1. Here we answer their question in the affirmative.
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Theorem 2. Every graph on n vertices admits a separating cycle system of size 41n.

Note that any cycle separating system of Kn contains at least (n − 1)/2 elements, since each of
the

(
n
2

)
edges must be covered and any cycle contains at most n edges, so the bound in Theorem 2

is optimal apart from the leading constant. We do not believe that 41 is the correct multiplicative
constant, and we wonder whether every graph of order n admits a separating cycle system of order
n+ o(n).
Our proof uses a combination of properties of Pósa’s rotation-extension method, a covering result

due to Pyber, combined with algebraically-constructed edge covers of Hamiltonian graphs.

1.1 Pósa rotation-extension.

Given a graph G and S ⊆ V (G), we denote by NG(S) the set of vertices in V (G)\S which are adjacent
(in G) to some vertex in S. We omit subscripts when clear from the context. Let P = u · · · v be a
path from u to v. If x ∈ V (P ) is a neighbor of u in G and x− is the vertex preceding x in P , then
P ′ = P − xx− + ux is a path in G for which V (P ′) = V (P ). We say that P ′ has been obtained from P
by an elementary exchange fixing v (see Figure 1). A path obtained from P by a (possibly empty)
sequence of elementary exchanges fixing v is said to be a path derived from P . The set of endvertices
of paths derived from P distinct from v is denoted by Sv(P ). Since all paths derived from P have the
same vertex set as P , we have Sv(P ) ⊆ V (P ). When P is a longest path ending at v, we obtain the
following (for a proof see [2]).

u x− x v

Figure 1: a path (highlighted) obtained by an elementary exchange fixing v.

Lemma 3 ([3]). If P = u · · · v is a longest path of a graph G, then
∣∣NG(S)

∣∣ ⩽ 2
∣∣Sv(P )

∣∣.
We also use the following property of Pósa rotations.

Lemma 4. If P = u · · · v be a longest path of a graph G and S = Sv(P ), then G contains a subgraph C
which is either and edge or a cycle and moreover S ∪N(S) ⊆ C.

Proof. Consider the vertex z ∈ V (P ) ∩ N(S) which lies closest to v in P , and let P ′ = u′ · · · v be a
path obtained from P by elementary exchanges fixing v so that P ′ starts with a neighbor u′ of z. Note
that C is an edge when S = {u} and |N(S)| = 1. Since the section P [z, v] of P from z to v intersects
S∪N(S) precisely in v, and P ′∪u′z has at most one cycle, we conclude that C = (P ′+uv)\E(P [w, v])
is either an edge or a cycle that contains S ∪N(S)

2 Separating into cycles

For the sake of clarity, we make no attempt to optimize multiplicative constants in the argument. This
allows us to better highlight its main ideas. It also seems unlikely that the optimal multiplicative
constant can be reached by this approach alone.
The following theorem of Pyber is useful in our proof.

Theorem 5 (Pyber [8]). Every graph G contains |V (G)| − 1 cycles and edges covering E(G).

Given a graph G, a collection J of subgraphs of G, and e, f ∈ E(G), we say that J separates e
from f if there exists J ∈ J such that E(J) ∩ {e, f} = {e}. Similarly, given E, F ⊆ E(G), we say that
J separates E from F if J separates e from f for all distinct e ∈ E and f ∈ F.
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Proof of Theorem 2. We proceed by induction on n. Let G be a graph with n vertices. If G is empty,
the result trivially holds. Let P = u · · · v be a longest path of G and let S = Sv(P ). By Lemma 4,
there exists C ⊆ G which is either an edge or a cycle and which contains S ∪N(S).
Let H be the subgraph of G induced by the edges incident to at least a vertex in S, let h = |V (H)|,

and let G′ = G \ S. Then G = H ∪G′ and V (H) = S ∪N(S), so h ⩽ 3|S| by Lemma 3.
Note that S is not empty (because G is not empty). By the induction hypothesis, there is a cycle

separating system C′ of G′ of size at most 41(n − |S|). Note that C′ separates E(G′) from E(H).
In what follows, we construct a set C of at most 41|S| edges and cycles which separates E(H) from
E(G), i.e., separates edges in H and also separates E(H) from E(G′). This set C is the union of three
collections of cycles and edges (D,E and H) which we next define.
Let D be a collection of at most h−1 ⩽ 3|S|−1 edges and cycles which covers E(H)\E(C) (such D

exists by Lemma 5), and let E = E(C) ∩ E(H) be the collection of edges of C which contain a vertex
in S. Note that |E| ⩽ 2|S|, and that E separates the edges of E(C)∩E(H) among themselves and from
all other edges of G. Moreover, D separates the edges of E(H) \ E(C) from all other edges. The final
component of C will separate the edges of E(H) \ E(C) from one another.

Note that every edge in E(H) \ E(C) has both endvertices in V (H) = S ∪ N(S). Let v1, . . . , vh
denote the vertices in V (H), labeled following the cyclic order in which they appear in C. From this
point onward, whenever we refer to an edge vivj , we will always assume that i < j. We say that edges
vivj and vrvs cross each other if either i < r < j < s or r < i < s < j. For given integers k and ℓ,
consider the two matchings

Mk = {vivj ∈ E(H) \ E(C) : j − i = k}
Nℓ = {vivj ∈ E(H) \ E(C) : j − 2i = ℓ}

Note that at most 3h ⩽ 9|S| of these matchings are nonempty, because Mk is empty whenever k < 2
or k > h − 1, and Nℓ is empty if ℓ < −h + 2 or ℓ > h − 2. We claim that the nonempty matchings
separate the edges in E(H) \E(C). Pick two edges vivj and vrvs. If j− i ̸= s− r, then Mj−i separates
vivj from vrvs and, moreover, Ms−r separates vrvs from vivj . Similarly, if j − 2i ̸= s− 2r, then Nj−2i

separates vivj from vrvs and Ns−2r separates vrvs from vivj . Finally, it is easy to check that j−i = s−r
and i− 2j = s− 2r if and only if i = r and j = s, that is, if and only if vivj = vrvs. We conclude that
every pair of distinct edges in E(H) \ E(C) is separated by these matchings.

To construct H we shall cover each nonempty Mk (respectively, Nℓ) using at most 4 cycles in Mk∪C
(respectively, Nℓ ∪ C) each. A trivial yet crucial observation we shall use here is that if M ⊆ Mk

(or M ⊆ Nℓ) is a set of pairwise crossing edges and |M | is odd, then M ∪ C contains a cycle which

covers M (see Figure 2). More generally, if M admits a partition
⋃

α S
(M)
α such that

(i) each S
(M)
α is formed by odd number of pairwise crossing edges, and

(ii) each pair of distinct edges vivj ∈ S
(M)
α and vrvs ∈ S

(M)
β cross if and only if α = β,

then M ∪ C contains a cycle which covers M (see Figure 2).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19

Figure 2: A cycle covering an odd number of pairwise crossing edges (v2v9, v4v11 and v8v15).

Indeed, it turns out that each of the matchings Mk and Nℓ admits a 4-piece partition such that each
part satisfies both (i) and (ii). Consequently, each nonempty Mk and each Nℓ can be covered by at



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

most four cycles using only edges in the matching and in C. The required partitions will be obtained
by splitting each matching into two, twice. Given positive integers u, let f(u) be the largest integer
such that 2q(ℓ+ 1)− ℓ ⩽ u. For all k, all ℓ and all π ∈ {0, 1}, put

Mk,π = {vivj ∈ E(H) \ E(C) : ⌊i/k⌋ ≡ π (mod 2)}
Nℓ,π = {vivj ∈ E(H) \ E(C) : f(i) ≡ π (mod 2)}.

Let M be an arbitrary Mk,π or Nℓ,π. We claim that M admits a partition
⋃

α S
(M)
α such that distinct

edges of M cross if and only if they belong to the same part.

Proof of claim (partition of Mk,π). We begin with the caseM = Mk,π. Let vivj and vrvs be distinct
edges in Mk,π. Without loss of generality, we assume i < r. By definition, j = i + k and s = r + k.
Since ⌊i/k⌋ and ⌊r/k⌋ have the same parity, then either ⌊i/k⌋ = ⌊r/k⌋ or ⌊r/k⌋ − ⌊i/k⌋ ⩾ 2. In the
former case, we have that

r <

(⌊
r

k

⌋
+ 1

)
k =

(⌊
i

k

⌋
+ 1

)
k = i+ k = j,

so vivj and vrvs cross, while in the latter they do not, since

j = i+ k <
(
⌊i/k⌋+ 1

)
k + k ⩽

(
⌊r/k⌋ − 1

)
k + k ⩽ r.

Hence the crossing relation defines equivalence classes among the edges inMk,π, and thus the a partition
of M satisfying (ii) exists.

Proof of claim (partition of Nℓ,π). The case M = Nℓ,π is similar. Consider distinct vi′vj′ and vr′vs′

in Nℓ,π, where without loss of generality we assume i′ < r′. By definition, either f(i′) = f(r′) or
f(r′)− f(i′) ⩾ 2. In the former case vi′vj′ and vr′vs′ must cross, since

r′ ⩽ 2f(r
′)+1(ℓ+ 1)− ℓ = 2f(i

′)+1(ℓ+ 1)− ℓ ⩽ 2
(
2f(i

′)(ℓ+ 1)− ℓ
)
+ ℓ ⩽ 2i′ + ℓ = j′.

On the other hand, if f(r′)− f(i′) ⩾ 2, then

j′ = 2i′ + ℓ ⩽ 2
(
2f(i

′)+1(ℓ+ 1)− ℓ
)
+ ℓ ⩽ 2f(i

′)+2(ℓ+ 1)− ℓ ⩽ 2f(r
′)+2(ℓ+ 1)− ℓ ⩽ r′,

and consequently vi′vj′ and vr′vs′ do not cross. As before we conclude that M admits a partition⋃
α S

(M)
α which satisfies (ii).

Returning to the proof of the theorem, we complete our partitioning by refining each one of the
nonempty matchings Mk,π and Nℓ,π (for each k, ℓ and π) further into two pieces each, so that any
matching after the refinement also satisfies (i) (note that partition refinement does not break (ii)).

More precisely, by (ii), Mk,π has a natural partition
⋃

α S
(Mk,π)
α into equivalence classes such that

edges in the same class are pairwise crossing and edges in distinct classes do not cross. Form M1
k,π

by selecting arbitrarily one edge from each even-sized equivalence class, and let M2
k,π = Mk,π \ M1

k,π

be the remaining edges of Mk (i.e., M1
k,π contains at most one edge from each equivalence class, and

M2
k,π contains an odd number of edges from each equivalence class). We use the same criterion for

partitioning Nℓ,π into N1
ℓ,π ∪N2

ℓ,π.
Note that each part resulting from this refinement satisfies both (i) and (ii). It follows that there

exists a collection H of at most 4 · 9|S| = 36|S| cycles such that each nonempty Mk (respectively, Nℓ)
is covered by a at most 4 cycles in Mk ∪ E(C) (respectively, Nℓ ∪ E(C)), as desired.
Note that H separates the edges in E(H) \ E(C) from E(G), and contains at most 36|S| elements.

Since |E| ⩽ 2|S| and |D| ⩽ 3|S|, we have that C = D∪E∪H has at most 41|S| edges and paths. Hence,
C′ ∪ C is a cycle separating system of G with cardinality at most 41(n− |S|) + 41|S| = 41n as desired.
This completes the proof.
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3 Concluding remarks

In this article, we have shown that every n-vertex graph admits a separating system consisting of O(n)
edges and cycles (which we call cycle separating systems for short). This is, in at least two ways,
a natural extension of previous results about the existence of path separating systems. On the one
hand, a cycle separating system immediately yields a path separating system (obtained by breaking
each cycle into two paths). On the hand, since paths and cycles are, respectively, subdivisions of K2

and K3, the following question immediately suggests itself.

Question 6. Is it true that for every natural t ⩾ 2, every n-vertex graph admits a separating system
consisting of Ot(n) edges and subdivisions of Kt ?

Note that edges are necessary in the separating systems in Question 6, because a union of disjoint
Kt−1 cliques has linearly many edges and no Kt subdivision. This follows in more generality from
a classical result of Mader, stating that for every t there exists f(t) such that every graph free of a
Kt subdivision has average degree at most f(t).

Our Theorem 2 and the results in [2] confirm the conjecture for t ⩽ 3. In a forthcoming article,
the authors extend this for t = 4 as well, but to the best of our knowledge no further cases have been
settled.
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