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Abstract

An almost cover of a finite set in the affine space is a collection of hyperplanes that together
cover all points of the set except one. According to the Alon-Füredi theorem, every almost cover
of the vertex set of an n-dimensional cube requires at least n hyperplanes. Here we investigate
a possible generalization of this result to Coxeter permutahedra: convex polytopes whose vertices
form the orbit of a generic point under the action of a finite reflection group.

1 Introduction

An almost cover of a finite set in the affine space is a collection of hyperplanes that together cover
all points of the set except one. According to a classical result of Jamison [11], an almost cover of
the n-dimensional affine space over the q-element finite field requires at least (q − 1)n hyperplanes.
Equivalently, to pierce every affine hyperplane in Fnq one needs at least (q− 1)n+ 1 points, see [5]. See
also [4] for further results in finite geometries. Another example is the Alon–Füredi theorem [2]: Every
almost cover of the vertex set of an n-dimensional cube requires at least n hyperplanes.

Consider those points in the n-dimensional space whose coordinates form a permutation of the first n
positive integers. The elements of this set Pn are the vertices of a convex (n− 1)-dimensional polytope
called the permutahedron (spelled also as permutohedron) Πn−1. For n = 3 it is a regular hexagon,
for n = 4 a truncated octahedron. This polytope has many fascinating properties and can be used to
illustrate various concepts in geometry, combinatorics and group theory, see [13]. Our starting point is
the following analogue of the Alon–Füredi theorem observed by Hegedüs, see [8].

Theorem 1. Every almost cover of the vertices of Πn−1 consists of at least
(
n
2

)
hyperplanes. This

bound is sharp.

A zonotope is a convex polytope that can be represented as the Minkowski sum of a finite number
of line segments. A collection of line segments is called nondegenerate if no two of the segments are
parallel to each other. Each zonotope Z can be written as the Minkowski sum of a nondegenerate
collection of line segments, unique up to translations. The number of the summands, denoted by
rk(Z), we call the rank of Z. In [8] we suggested that the above result and the Alon–Füredi theorem
must be representatives in a more general famework.

Conjecture 2. Every almost cover of the vertices of a zonotope Z consists of at least rk(Z) hyperplanes.
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Apart from some small examples, all zonotopes for which we were able to verify this hypothesis
turned out to be Coxeter permutahedra. Our purpose here is to initiate a systematic study of the almost
covers of their vertex sets based on a polynomial method colloquially referred to as the application of
the Combinatorial Nullstellensatz.

We express our gratitude to Günter M. Ziegler for identifying one of our first examples as a per-
mutahedron of type B, and to Francesco Santos for drawing the beautifully illuminating paper [6] of
Fomin and Reading to our attention. For additional background information we refer to [9, 10].

2 Two elementary examples

The 2-dimensional zonotopes of rank r are exactly the centrally symmetric convex 2r-gons, and every
almost cover of such a polygon with lines requires at least r lines. There are two types of them that
occur as zonotopal Coxeter permutahedra: regular 2r-gons and equiangular 2r-gons (r even) with
alternating edge lengths. (The vertices of) any prism over such polygons have almost covers of size
r + 1. An elementary argument using a simple modular invariant reveals that r planes do not suffice.

Theorem 3. Let Z be a prism over a regular 2n-gon. Then every almost cover of the vertices of Z
consists of at least rk(Z) = n+ 1 planes.

Theorem 4. Let Z be a prism over an equiangular 4n-gon having alternating edge lengths. Then every
almost cover of the vertices of Z consists of at least rk(Z) = 2n+ 1 planes.

3 The polynomial toolkit

The Combinatorial Nullstellensatz, formulated by Noga Alon in the late nineties, describes, in an
efficient way, the structure of multivariate polynomials whose zero-set includes a Cartesian product
over a field F. This characterization immediately implies ([1]) the first part of the following theorem.

Theorem 5. Let S1, . . . , Sn be subsets of F, |Si| = ki, and let f be a polynomial in F[x] = F[x1, . . . , xn]
whose degree is at most

∑n
i=1(ki − 1).

(i) If f(s) = 0 for every s ∈ S1 × · · · × Sn, then the coefficient of the monomial
∏n
i=1 x

ki−1
i in f is

zero.

(ii) If f(s) = 0 for all but one element s ∈ S1 × · · · × Sn, then the coefficient of the monomial∏n
i=1 x

ki−1
i in f is not zero.

The second part can be derived directly from (i) rather easily and is contained implicitly in many
works, e.g. it is a very special case of Corollary 4.2 in [3]. The result has innumerable variations with
even more different proofs, see e.g. [12]. Apparently they all depend on two basic principles: reduction
modulo a standard Gröbner basis and Lagrange interpolation. It also implies the following immediate
consequence of Theorem 5 in [2] we find particularly useful for the present work.

Theorem 6. Let S1, . . . , Sn be nonempty subsets of F, B = S1 × · · · × Sn. If a polynomial f ∈
F[x1, . . . , xn] vanishes at every point of B except one, then its degree is at least

∑n
i=1(|Si| − 1).

For a polynomial f ∈ R[x1, . . . , xn] set V (f) = {a ∈ Rn | f(a) = 0}; it is called a hypersurface of degree
deg f . Note that the union of m hyperplanes is a hypersurface of degree m. Thus an almost cover
of X ⊆ Rn is a hypersurface satifying X \ {v} ⊆ V (f), v 6∈ V (f) for some v ∈ X and a polynomial
f that splits into linear factors over R. For an arbitrary hypersurface V (f) satisfying the above two
conditions for X and v we say that it is an almost cover of X: it covers every point of X except v.
Throughout this work we are going to employ the following consequence of Theorem 6.
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Corollary 7. Let ∅ 6= X ⊆ B = S1×· · ·×Sn ⊆ Rn, f ∈ R[x1, . . . , xn] and d = (
∑n

i=1 |Si|)−n−deg f .
If X = B \ V (f), then every hypersurface which is an almost cover of X has degree at least d.

For example, the Alon–Füredi theorem follows with the choice Si ≡ {0, 1}, X = B, f = 1. For the first
statement in Theorem 1 one can use Si ≡ {1, 2, . . . , n}, X = Pn, f =

∏
1≤i<j≤n(xj − xi).

4 Prisms over permutahedra

Here we demonstrate how Theorem 5 can be used via a polynomial invariant to verify Conjecture 2
for prisms over permutahedra. Because of affine invariance it is enough to prove it for the prism whose
bases are Πn−1 and −Πn−1 = Πn−1−(n+1)(e1 + · · ·+en), where e1, . . . , en is the standard orthonormal
basis for Rn.

Theorem 8. Every almost cover of Pn ∪ (−Pn) consists of at least
(
n
2

)
+ 1 hyperplanes.

Proof. Let m =
(
n
2

)
and suppose that the hyperplanes Hi, 1 ≤ i ≤ m cover every point of Pn ∪ (−Pn)

except v. By symmetry, we may assume that v ∈ −Pn. The hyperplane Hi is defined by an equation
fi(x) = ai where fi is a linear form. Consider the Vandermonde polynomial V (x) =

∏
i<j(xj − xi).

The polynomial

f(x) = V (x)
m∏
i=1

(fi(x)− ai))

of degree n(n− 1) vanishes at every point of the Cartesian product {1, 2, . . . , n}n. By Theorem 5 (i),
the coefficient of the monomial

∏n
i=1 x

n−1
i in f must be zero.

On the other hand, the polynomial f attains the value 0 at every point of the Cartesian product
{−1,−2, . . . ,−n}n except v. That is, the polynomial

g(x) = f(−x) = (−1)(
n
2)V (x)

m∏
i=1

(−fi(x)− ai)) = V (x)
m∏
i=1

(fi(x) + ai))

of degree n(n − 1) vanishes at every point of the Cartesian product {1, 2, . . . , n}n except −v. By
Theorem 5 (ii), the coefficient of the monomial

∏n
i=1 x

n−1
i in g must be nonzero. Since the degree

n(n− 1) parts of the polynomials f and g are identical, we arrive at a contradiction.

5 Reflection groups, root systems and Coxeter permutahedra

Let V be an n-dimensional real euclidean space with orthonormal basis e1, . . . , en. Here and in what
follows we identify the vectors of V with the points of Rn. For a nonzero vector α ∈ V we denote
by sα the orthogonal reflection in the linear hyperplane Hα orthogonal to α. Thus, sα(α) = −α. A
finite reflection group acting on V is any finite group generated by (a nonempty set of) such reflections.
A root system Φ is a set of nonzero vectors satisfying Φ ∩ Rα = {−α, α} and sα(Φ) = Φ for every
α ∈ Φ. Crytallographic root systems satisfy an extra integrality condition. The group W (Φ) (called
Weyl group in the crystallographic case) of orthogonal transformations generated by the reflections sα,
α ∈ Φ is always a finite reflection group in which the reflections exhaust Φ. Thus, Φ is invariant under
the action of W . Conversely, if W is a finite reflection group, then the unit vectors α for which sα ∈W
form a root system Φ for which W = W (Φ). If the vectors in Φ form one orbit under the action of W ,
then W = W (Φ′) if and only if Φ′ = cΦ for some 0 6= c ∈ R. On the other hand, if Φ is the union of
more than one orbits, then the common length of the vectors in an orbit may be scaled arbitrarily for
each orbit. Thus, if W = I2(m) is the symmetry group of a regular m-gon centered at the origin, then
each corresponding root system has 2m elements, which form one orbit if m is odd and splits into two
orbits of equal size if m is even.
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Let W = W (Φ) be a finite reflection group. For any point a ∈ Rn, consider its orbit W (a). The
point a is called generic with respect to W , if |W (a)| = |W |, or equivalently, a 6∈

⋃
α∈ΦHα. In this

case W (a) is the vertex set of a (not necessarily full dimensional) convex polytope ΠW (a), referred to
as a W -permutahedron, or a Coxeter permutohedron of type W . Thus, a permutahedron of type I2(m)
is either a regular 2m-gon, or an equiangular 2m-gon with alternating edge lengths (the latter being a
zonotope only for m even), and each such polygon centered at the origin can be obtained as a Coxeter
permutahedron for an appropriate choice of Φ. All vertices except one can be covered by m, but not
less lines.

A root system Φ is irreducible if it cannot be partitioned into two subsets lying in two nontrivial
orthogonal complements of V , or equivalently, if W (Φ) is not the direct sum of two proper subgroups
acting as reflection groups on two such subspaces. Theorems 3 and 4 thus read as follows: Every almost
cover of a zonotopal permutahedron of type I2(m)⊕ A1 requires at least m+ 1 hyperplanes. Note that
the group contains exactly m+ 1 reflections.

Next consider the reflection group An−1 acting on Rn, generated by the reflections in the hyperplanes
of equation xi+1 = xi, i = 1, . . . , n − 1. It is isomorphic to the symmetric group Sn, and a point is
generic if and only if all its coordinates are different. Thus we have Πn−1 = ΠAn−1(1, 2, . . . , n), and
Thm 1 coupled with the remark following its proof in [8] can be read as follows: Every almost cover of
the vertices of a Coxeter permutahedron of type An−1 consists of at least

(
n
2

)
hyperplanes. The bound

is also sharp. Note that the vectors ei − ej (i 6= j) form a root system for An−1, so the bound equals
the number of reflections contained in An−1. In general, for a reflection group W = W (Φ), the number
of reflections contained in W is N(W ) = |Φ|/2.

It is not difficult to prove an analogue of Thm 1 for permutahedra of type B. The hyperoctahedral
group Bn acting on Rn is generated by the reflections in the hyperplanes of equation xi+1 = xi,
i = 1, . . . , n− 1, together with the reflection in the hyperplane x1 = 0; it contains An−1 as a subgroup.
Altogether it contains n2 reflections in the hyperplanes xi = εxj (1 ≤ i < j ≤ n, ε = ±1) and xi = 0
(1 ≤ i ≤ n). Thus, N(Bn) = n2. A point a = (a1, . . . , an) is generic if and only if ai 6= 0 for all i and
|ai| 6= |aj | for all i 6= j. Thus every orbit of a generic point is of the form

Bn(a) = {ε1aπ(1) + · · ·+ εnaπ(n) | εi = ±1, π ∈ Sn}

for some a ∈ Rn with coordinates 0 < a1 < · · · < an.

Theorem 9. Every almost cover of the vertices of a Coxeter permutahedron of type Bn consists of at
least n2 hyperplanes. This bound is sharp.

Proof. The vertex set of the permutahedron ΠBn(a) with 0 < a1 < · · · < an is contained in the
Cartesian product S1×· · ·×Sn where Si = {ai,−ai | 1 ≤ i ≤ n}, and each point in (S1×· · ·×Sn)\Bn(a)
is a root of the polynomial

f(x) =
∏

1≤i<j≤n
(xj − xi)(xj + xi)

of degree n(n− 1). According to Corollary 7, every almost cover of Bn(a) consists of at least

(

n∑
i=1

|Si|)− n− deg f = 2n2 − n− n(n− 1) = n2

hyperplanes. To see that the bound cannot be improved, notice that the hyperplanes xi = aj (i < j),
xi = −aj (i ≤ j) cover every vertex but a = (a1, a2, . . . , an).

The study of almost covers of the vertices of permutahedra of type D is more subtle. The group Dn is
the subgroup of index 2 in Bn generated by the reflections in the hyperplanes of equation xi+1 = xi,
i = 1, . . . , n − 1, together with the reflection in the hyperplane x2 = −x1. Altogether it contains
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n(n − 1) reflections in the hyperplanes xi = εxj (1 ≤ i < j ≤ n, ε = ±1). A point a = (a1, . . . , an) is
generic if and only if |ai| 6= |aj | for all i 6= j. Thus every orbit of a generic point is of the form

Dn(a) = {ε1aπ(1) + · · ·+ εnaπ(n) | π ∈ Sn, ε ∈ E}

for some a ∈ Rn with coordinates −a2 < a1 < a2 < · · · < an, where E is either of the two subsets of
{−1, 1}n that consists of all vectors in which the number of −1 coordinates are the same modulo 2.

Theorem 10. Every almost cover of the vertices of a Coxeter permutahedron of type Dn consists of
at least n(n− 1) hyperplanes. This bound is sharp in the following sense: if a is a generic point one of
whose coordinates is 0, then Dn(a) has an almost cover of size n(n− 1).

Proof. It is very similar to the previous one if the vertices of the permutahedron have a 0 coordinate.
Otherwise we may assume by symmetry that the vertex set is Dn(a) with 0 < a1 < · · · < an. In this
case we can apply Corollary 7 with the polynomial

f(x) =
∏

1≤i<j≤n
(xj − xi)(xj + xi)

(
n∏
i=1

xi +
n∏
i=1

ai

)

of degree n2.

These results suggest that the following might be true.

Conjecture 11. For a finite reflection group W , every almost cover of the vertices of a permutahedron
of type W consists of at least N(W ) hyperplanes.

In contrast, all vertices of a Coxeter permutahedron are contained in a single hypersurface of degree 2,
namely a sphere centered at the origin.

6 Zonotopal permutahedra

For the reflection group W = An, the orbit of any generic point contains a unique point a =
(a1, . . . , an+1) with a1 < · · · < an+1. Similarly, for W = Bn, the orbit of any generic point con-
tains a unique point a = (a1, . . . , an) with 0 < a1 < · · · < an. For such points it is known that the
Coxeter permutahedron ΠW (a) is a zonotope if and only if the coordinates ai form an arithmetic
progression, see [7, Thm 4.13]. We can prove an analogous statement for permutahedra of type D,
and in fact all these results can be viewed as special cases of a more general phenomenon. For a root
system Φ, consider any set Φ+ of positive roots. The Minkowski sum of the line segments [−α/2, α/2],
α ∈ Φ+, independent of the choice of Φ+ we denote by Z(Φ). Then rk(Z(Φ)) = N(W (Φ)).

Theorem 12. Let W be a finite reflection group with a corresponding root system Φ. Then Z(Φ) is a
permutahedron of type W .

The reflection group W is called essential if it acts on V without nonzero fixed points. In general,
V = U ⊕U ′, where W is essential relative to U and the orthogonal complement U ′ consists of all fixed
points of W .

Theorem 13. A permutahedron Π of type W is a zonotope if and only if there exists a root system Φ
with W (Φ) = W and a vector u ∈ U ′ such that Π = Z(Φ) + u.

Although it is not likely that Conjectures 2 and 11 for Z(Φ) in general can be attacked by our methods,
it is possible to say something more for crystallographic root systems. We call a zonotope Z ⊂ Rn
special if there exist finite sets S1, . . . , Sn ⊂ R and a polynomial f such that the vertex set X of Z is
(S1 × · · · × Sn) \ V (f) and

rk(Z) ≤ |S1|+ · · ·+ |Sn| − n− deg f.
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According to Corollary 7, every almost cover of the vertices of a special zonotope Z consists of at
least rk(Z) hyperplanes. Now for an irreducible crystallographic root system Φ, Z(Φ) is special if
the type of Φ is An,Bn,Cn,Dn or G2. Moreover, if V is the sum of the orthogonal subspaces V1, V2

and Φ = Φ1 ∪ Φ2 with Φi = Φ ∩ Vi, then Z(Φ) is the product polytope Z(Φ1) × Z(Φ2). In general,
rk(Z1 × Z2) = rk(Z1) + rk(Z2) holds for arbitrary zonotopes Z1, Z2. Then the following construction
yields further examples for which these conjectures hold.

Theorem 14. If Z1, . . . , Zk are special zonotopes, then so is Z1 × · · · × Zk.

For the crystallographic root system Φ of type F4, the vertex set of Z(Φ) splits into three B4-orbits.
We can construct an almost cover of size 24 = rk(Z(Φ)), but we do not see if our method suits a proof
that this is best possible.

7 Conclusion

We investigated how the polynomial method can be used to study almost covers of vertex sets of
zopotopes and Coxeter permutahedra. In the meantime, Conjecture 2 was refuted by Gábor Damásdi,
whereas Conjecture 11 was verified by Péter Frenkel.
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[8] G. Hegedüs and Gy. Károlyi, Covering the permutohedron by affine hyperplanes, Acta Mathematica Hun-
garica, to appear. See arXiv:2305.06202v3.

[9] C. Hohlweg, Permutahedra and Associahedra: Generalized associahedra from the geometry of finite re-
flection groups, in: Associahedra, Tamari Lattices and Related Structures, Progress in Mathematics, 299,
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