A covering problem for zonotopes and Coxeter permutahedra

Gyula Károlyi^{*1,2}

¹HUN–REN Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13–15, H–1053 Budapest, Hungary
²Department of Algebra and Number Theory, Eötvös University, Pázmány P. sétány 1/C, H–1117 Budapest, Hungary

Abstract

An almost cover of a finite set in the affine space is a collection of hyperplanes that together cover all points of the set except one. According to the Alon-Füredi theorem, every almost cover of the vertex set of an n-dimensional cube requires at least n hyperplanes. Here we investigate a possible generalization of this result to Coxeter permutahedra: convex polytopes whose vertices form the orbit of a generic point under the action of a finite reflection group.

1 Introduction

An almost cover of a finite set in the affine space is a collection of hyperplanes that together cover all points of the set except one. According to a classical result of Jamison [11], an almost cover of the *n*-dimensional affine space over the *q*-element finite field requires at least (q-1)n hyperplanes. Equivalently, to pierce every affine hyperplane in \mathbb{F}_q^n one needs at least (q-1)n+1 points, see [5]. See also [4] for further results in finite geometries. Another example is the Alon-Füredi theorem [2]: Every almost cover of the vertex set of an *n*-dimensional cube requires at least *n* hyperplanes.

Consider those points in the *n*-dimensional space whose coordinates form a permutation of the first *n* positive integers. The elements of this set P_n are the vertices of a convex (n-1)-dimensional polytope called the permutahedron (spelled also as permutohedron) Π_{n-1} . For n = 3 it is a regular hexagon, for n = 4 a truncated octahedron. This polytope has many fascinating properties and can be used to illustrate various concepts in geometry, combinatorics and group theory, see [13]. Our starting point is the following analogue of the Alon–Füredi theorem observed by Hegedüs, see [8].

Theorem 1. Every almost cover of the vertices of Π_{n-1} consists of at least $\binom{n}{2}$ hyperplanes. This bound is sharp.

A zonotope is a convex polytope that can be represented as the Minkowski sum of a finite number of line segments. A collection of line segments is called nondegenerate if no two of the segments are parallel to each other. Each zonotope Z can be written as the Minkowski sum of a nondegenerate collection of line segments, unique up to translations. The number of the summands, denoted by rk(Z), we call the rank of Z. In [8] we suggested that the above result and the Alon–Füredi theorem must be representatives in a more general famework.

Conjecture 2. Every almost cover of the vertices of a zonotope Z consists of at least rk(Z) hyperplanes.

^{*}Email: karolyi.gyula@renyi.hu

Apart from some small examples, all zonotopes for which we were able to verify this hypothesis turned out to be Coxeter permutahedra. Our purpose here is to initiate a systematic study of the almost covers of their vertex sets based on a polynomial method colloquially referred to as the application of the Combinatorial Nullstellensatz.

We express our gratitude to Günter M. Ziegler for identifying one of our first examples as a permutahedron of type B, and to Francesco Santos for drawing the beautifully illuminating paper [6] of Fomin and Reading to our attention. For additional background information we refer to [9, 10].

2 Two elementary examples

The 2-dimensional zonotopes of rank r are exactly the centrally symmetric convex 2r-gons, and every almost cover of such a polygon with lines requires at least r lines. There are two types of them that occur as zonotopal Coxeter permutahedra: regular 2r-gons and equiangular 2r-gons (r even) with alternating edge lengths. (The vertices of) any prism over such polygons have almost covers of size r + 1. An elementary argument using a simple modular invariant reveals that r planes do not suffice.

Theorem 3. Let Z be a prism over a regular 2n-gon. Then every almost cover of the vertices of Z consists of at least rk(Z) = n + 1 planes.

Theorem 4. Let Z be a prism over an equiangular 4n-gon having alternating edge lengths. Then every almost cover of the vertices of Z consists of at least rk(Z) = 2n + 1 planes.

3 The polynomial toolkit

The Combinatorial Nullstellensatz, formulated by Noga Alon in the late nineties, describes, in an efficient way, the structure of multivariate polynomials whose zero-set includes a Cartesian product over a field \mathbb{F} . This characterization immediately implies ([1]) the first part of the following theorem.

Theorem 5. Let S_1, \ldots, S_n be subsets of \mathbb{F} , $|S_i| = k_i$, and let f be a polynomial in $\mathbb{F}[x] = \mathbb{F}[x_1, \ldots, x_n]$ whose degree is at most $\sum_{i=1}^n (k_i - 1)$.

- (i) If f(s) = 0 for every $s \in S_1 \times \cdots \times S_n$, then the coefficient of the monomial $\prod_{i=1}^n x_i^{k_i-1}$ in f is zero.
- (ii) If f(s) = 0 for all but one element $s \in S_1 \times \cdots \times S_n$, then the coefficient of the monomial $\prod_{i=1}^n x_i^{k_i-1}$ in f is not zero.

The second part can be derived directly from (i) rather easily and is contained implicitly in many works, e.g. it is a very special case of Corollary 4.2 in [3]. The result has innumerable variations with even more different proofs, see e.g. [12]. Apparently they all depend on two basic principles: reduction modulo a standard Gröbner basis and Lagrange interpolation. It also implies the following immediate consequence of Theorem 5 in [2] we find particularly useful for the present work.

Theorem 6. Let S_1, \ldots, S_n be nonempty subsets of \mathbb{F} , $B = S_1 \times \cdots \times S_n$. If a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ vanishes at every point of B except one, then its degree is at least $\sum_{i=1}^n (|S_i| - 1)$.

For a polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]$ set $V(f) = \{a \in \mathbb{R}^n \mid f(a) = 0\}$; it is called a hypersurface of degree deg f. Note that the union of m hyperplanes is a hypersurface of degree m. Thus an almost cover of $X \subseteq \mathbb{R}^n$ is a hypersurface satisfying $X \setminus \{v\} \subseteq V(f)$, $v \notin V(f)$ for some $v \in X$ and a polynomial f that splits into linear factors over \mathbb{R} . For an arbitrary hypersurface V(f) satisfying the above two conditions for X and v we say that it is an almost cover of X: it covers every point of X except v. Throughout this work we are going to employ the following consequence of Theorem 6.

Corollary 7. Let $\emptyset \neq X \subseteq B = S_1 \times \cdots \times S_n \subseteq \mathbb{R}^n$, $f \in \mathbb{R}[x_1, \ldots, x_n]$ and $d = (\sum_{i=1}^n |S_i|) - n - \deg f$. If $X = B \setminus V(f)$, then every hypersurface which is an almost cover of X has degree at least d.

For example, the Alon–Füredi theorem follows with the choice $S_i \equiv \{0,1\}, X = B, f = 1$. For the first statement in Theorem 1 one can use $S_i \equiv \{1, 2, ..., n\}, X = P_n, f = \prod_{1 \le i < j \le n} (x_j - x_i)$.

4 Prisms over permutahedra

Here we demonstrate how Theorem 5 can be used via a polynomial invariant to verify Conjecture 2 for prisms over permutahedra. Because of affine invariance it is enough to prove it for the prism whose bases are Π_{n-1} and $-\Pi_{n-1} = \Pi_{n-1} - (n+1)(e_1 + \cdots + e_n)$, where e_1, \ldots, e_n is the standard orthonormal basis for \mathbb{R}^n .

Theorem 8. Every almost cover of $P_n \cup (-P_n)$ consists of at least $\binom{n}{2} + 1$ hyperplanes.

Proof. Let $m = \binom{n}{2}$ and suppose that the hyperplanes H_i , $1 \le i \le m$ cover every point of $P_n \cup (-P_n)$ except v. By symmetry, we may assume that $v \in -P_n$. The hyperplane H_i is defined by an equation $f_i(x) = a_i$ where f_i is a linear form. Consider the Vandermonde polynomial $V(x) = \prod_{i < j} (x_j - x_i)$. The polynomial

$$f(x) = V(x) \prod_{i=1}^{m} (f_i(x) - a_i))$$

of degree n(n-1) vanishes at every point of the Cartesian product $\{1, 2, ..., n\}^n$. By Theorem 5 (i), the coefficient of the monomial $\prod_{i=1}^n x_i^{n-1}$ in f must be zero.

On the other hand, the polynomial f attains the value 0 at every point of the Cartesian product $\{-1, -2, \ldots, -n\}^n$ except v. That is, the polynomial

$$g(x) = f(-x) = (-1)^{\binom{n}{2}} V(x) \prod_{i=1}^{m} (-f_i(x) - a_i) = V(x) \prod_{i=1}^{m} (f_i(x) + a_i)$$

of degree n(n-1) vanishes at every point of the Cartesian product $\{1, 2, ..., n\}^n$ except -v. By Theorem 5 (ii), the coefficient of the monomial $\prod_{i=1}^n x_i^{n-1}$ in g must be nonzero. Since the degree n(n-1) parts of the polynomials f and g are identical, we arrive at a contradiction.

5 Reflection groups, root systems and Coxeter permutahedra

Let V be an n-dimensional real euclidean space with orthonormal basis e_1, \ldots, e_n . Here and in what follows we identify the vectors of V with the points of \mathbb{R}^n . For a nonzero vector $\alpha \in V$ we denote by s_α the orthogonal reflection in the linear hyperplane H_α orthogonal to α . Thus, $s_\alpha(\alpha) = -\alpha$. A finite reflection group acting on V is any finite group generated by (a nonempty set of) such reflections. A root system Φ is a set of nonzero vectors satisfying $\Phi \cap \mathbb{R}\alpha = \{-\alpha, \alpha\}$ and $s_\alpha(\Phi) = \Phi$ for every $\alpha \in \Phi$. Crytallographic root systems satisfy an extra integrality condition. The group $W(\Phi)$ (called Weyl group in the crystallographic case) of orthogonal transformations generated by the reflections s_α , $\alpha \in \Phi$ is always a finite reflection group in which the reflections exhaust Φ . Thus, Φ is invariant under the action of W. Conversely, if W is a finite reflection group, then the unit vectors α for which $s_\alpha \in W$ form a root system Φ for which $W = W(\Phi)$. If the vectors in Φ form one orbit under the action of W, then $W = W(\Phi')$ if and only if $\Phi' = c\Phi$ for some $0 \neq c \in \mathbb{R}$. On the other hand, if Φ is the union of more than one orbits, then the common length of the vectors in an orbit may be scaled arbitrarily for each orbit. Thus, if $W = I_2(m)$ is the symmetry group of a regular m-gon centered at the origin, then each corresponding root system has 2m elements, which form one orbit if m is odd and splits into two orbits of equal size if m is even. Let $W = W(\Phi)$ be a finite reflection group. For any point $a \in \mathbb{R}^n$, consider its orbit W(a). The point a is called *generic* with respect to W, if |W(a)| = |W|, or equivalently, $a \notin \bigcup_{\alpha \in \Phi} H_{\alpha}$. In this case W(a) is the vertex set of a (not necessarily full dimensional) convex polytope $\Pi W(a)$, referred to as a *W*-permutahedron, or a Coxeter permutohedron of type W. Thus, a permutahedron of type $I_2(m)$ is either a regular 2m-gon, or an equiangular 2m-gon with alternating edge lengths (the latter being a zonotope only for m even), and each such polygon centered at the origin can be obtained as a Coxeter permutahedron for an appropriate choice of Φ . All vertices except one can be covered by m, but not less lines.

A root system Φ is irreducible if it cannot be partitioned into two subsets lying in two nontrivial orthogonal complements of V, or equivalently, if $W(\Phi)$ is not the direct sum of two proper subgroups acting as reflection groups on two such subspaces. Theorems 3 and 4 thus read as follows: *Every almost cover of a zonotopal permutahedron of type* $I_2(m) \oplus A_1$ *requires at least* m + 1 *hyperplanes.* Note that the group contains exactly m + 1 reflections.

Next consider the reflection group A_{n-1} acting on \mathbb{R}^n , generated by the reflections in the hyperplanes of equation $x_{i+1} = x_i$, i = 1, ..., n-1. It is isomorphic to the symmetric group S_n , and a point is generic if and only if all its coordinates are different. Thus we have $\Pi_{n-1} = \Pi A_{n-1}(1, 2, ..., n)$, and Thm 1 coupled with the remark following its proof in [8] can be read as follows: Every almost cover of the vertices of a Coxeter permutahedron of type A_{n-1} consists of at least $\binom{n}{2}$ hyperplanes. The bound is also sharp. Note that the vectors $e_i - e_j$ $(i \neq j)$ form a root system for A_{n-1} , so the bound equals the number of reflections contained in A_{n-1} . In general, for a reflection group $W = W(\Phi)$, the number of reflections contained in W is $N(W) = |\Phi|/2$.

It is not difficult to prove an analogue of Thm 1 for permutahedra of type B. The hyperoctahedral group B_n acting on \mathbb{R}^n is generated by the reflections in the hyperplanes of equation $x_{i+1} = x_i$, $i = 1, \ldots, n-1$, together with the reflection in the hyperplane $x_1 = 0$; it contains A_{n-1} as a subgroup. Altogether it contains n^2 reflections in the hyperplanes $x_i = \varepsilon x_j$ $(1 \le i < j \le n, \varepsilon = \pm 1)$ and $x_i = 0$ $(1 \le i \le n)$. Thus, $N(B_n) = n^2$. A point $a = (a_1, \ldots, a_n)$ is generic if and only if $a_i \ne 0$ for all i and $|a_i| \ne |a_j|$ for all $i \ne j$. Thus every orbit of a generic point is of the form

$$B_n(a) = \{\varepsilon_1 a_{\pi(1)} + \dots + \varepsilon_n a_{\pi(n)} \mid \varepsilon_i = \pm 1, \pi \in S_n\}$$

for some $a \in \mathbb{R}^n$ with coordinates $0 < a_1 < \cdots < a_n$.

Theorem 9. Every almost cover of the vertices of a Coxeter permutahedron of type B_n consists of at least n^2 hyperplanes. This bound is sharp.

Proof. The vertex set of the permutahedron $\Pi B_n(a)$ with $0 < a_1 < \cdots < a_n$ is contained in the Cartesian product $S_1 \times \cdots \times S_n$ where $S_i = \{a_i, -a_i \mid 1 \le i \le n\}$, and each point in $(S_1 \times \cdots \times S_n) \setminus B_n(a)$ is a root of the polynomial

$$f(x) = \prod_{1 \le i < j \le n} (x_j - x_i)(x_j + x_i)$$

of degree n(n-1). According to Corollary 7, every almost cover of $B_n(a)$ consists of at least

$$\left(\sum_{i=1}^{n} |S_i|\right) - n - \deg f = 2n^2 - n - n(n-1) = n^2$$

hyperplanes. To see that the bound cannot be improved, notice that the hyperplanes $x_i = a_j$ (i < j), $x_i = -a_j$ $(i \le j)$ cover every vertex but $a = (a_1, a_2, \ldots, a_n)$.

The study of almost covers of the vertices of permutahedra of type D is more subtle. The group D_n is the subgroup of index 2 in B_n generated by the reflections in the hyperplanes of equation $x_{i+1} = x_i$, i = 1, ..., n - 1, together with the reflection in the hyperplane $x_2 = -x_1$. Altogether it contains n(n-1) reflections in the hyperplanes $x_i = \varepsilon x_j$ $(1 \le i < j \le n, \varepsilon = \pm 1)$. A point $a = (a_1, \ldots, a_n)$ is generic if and only if $|a_i| \ne |a_j|$ for all $i \ne j$. Thus every orbit of a generic point is of the form

$$D_n(a) = \{\varepsilon_1 a_{\pi(1)} + \dots + \varepsilon_n a_{\pi(n)} \mid \pi \in S_n, \varepsilon \in E\}$$

for some $a \in \mathbb{R}^n$ with coordinates $-a_2 < a_1 < a_2 < \cdots < a_n$, where E is either of the two subsets of $\{-1, 1\}^n$ that consists of all vectors in which the number of -1 coordinates are the same modulo 2.

Theorem 10. Every almost cover of the vertices of a Coxeter permutahedron of type D_n consists of at least n(n-1) hyperplanes. This bound is sharp in the following sense: if a is a generic point one of whose coordinates is 0, then $D_n(a)$ has an almost cover of size n(n-1).

Proof. It is very similar to the previous one if the vertices of the permutahedron have a 0 coordinate. Otherwise we may assume by symmetry that the vertex set is $D_n(a)$ with $0 < a_1 < \cdots < a_n$. In this case we can apply Corollary 7 with the polynomial

$$f(x) = \prod_{1 \le i < j \le n} (x_j - x_i)(x_j + x_i) \left(\prod_{i=1}^n x_i + \prod_{i=1}^n a_i\right)$$

of degree n^2 .

These results suggest that the following might be true.

Conjecture 11. For a finite reflection group W, every almost cover of the vertices of a permutahedron of type W consists of at least N(W) hyperplanes.

In contrast, all vertices of a Coxeter permutahedron are contained in a single hypersurface of degree 2, namely a sphere centered at the origin.

6 Zonotopal permutahedra

For the reflection group $W = A_n$, the orbit of any generic point contains a unique point $a = (a_1, \ldots, a_{n+1})$ with $a_1 < \cdots < a_{n+1}$. Similarly, for $W = B_n$, the orbit of any generic point contains a unique point $a = (a_1, \ldots, a_n)$ with $0 < a_1 < \cdots < a_n$. For such points it is known that the Coxeter permutahedron $\Pi W(a)$ is a zonotope if and only if the coordinates a_i form an arithmetic progression, see [7, Thm 4.13]. We can prove an analogous statement for permutahedra of type D, and in fact all these results can be viewed as special cases of a more general phenomenon. For a root system Φ , consider any set Φ^+ of positive roots. The Minkowski sum of the line segments $[-\alpha/2, \alpha/2]$, $\alpha \in \Phi^+$, independent of the choice of Φ^+ we denote by $Z(\Phi)$. Then $\operatorname{rk}(Z(\Phi)) = N(W(\Phi))$.

Theorem 12. Let W be a finite reflection group with a corresponding root system Φ . Then $Z(\Phi)$ is a permutahedron of type W.

The reflection group W is called essential if it acts on V without nonzero fixed points. In general, $V = U \oplus U'$, where W is essential relative to U and the orthogonal complement U' consists of all fixed points of W.

Theorem 13. A permutahedron Π of type W is a zonotope if and only if there exists a root system Φ with $W(\Phi) = W$ and a vector $u \in U'$ such that $\Pi = Z(\Phi) + u$.

Although it is not likely that Conjectures 2 and 11 for $Z(\Phi)$ in general can be attacked by our methods, it is possible to say something more for crystallographic root systems. We call a zonotope $Z \subset \mathbb{R}^n$ special if there exist finite sets $S_1, \ldots, S_n \subset \mathbb{R}$ and a polynomial f such that the vertex set X of Z is $(S_1 \times \cdots \times S_n) \setminus V(f)$ and

$$\operatorname{rk}(Z) \le |S_1| + \dots + |S_n| - n - \deg f.$$

According to Corollary 7, every almost cover of the vertices of a special zonotope Z consists of at least $\operatorname{rk}(Z)$ hyperplanes. Now for an irreducible crystallographic root system Φ , $Z(\Phi)$ is special if the type of Φ is A_n, B_n, C_n, D_n or G_2 . Moreover, if V is the sum of the orthogonal subspaces V_1, V_2 and $\Phi = \Phi_1 \cup \Phi_2$ with $\Phi_i = \Phi \cap V_i$, then $Z(\Phi)$ is the product polytope $Z(\Phi_1) \times Z(\Phi_2)$. In general, $\operatorname{rk}(Z_1 \times Z_2) = \operatorname{rk}(Z_1) + \operatorname{rk}(Z_2)$ holds for arbitrary zonotopes Z_1, Z_2 . Then the following construction yields further examples for which these conjectures hold.

Theorem 14. If Z_1, \ldots, Z_k are special zonotopes, then so is $Z_1 \times \cdots \times Z_k$.

For the crystallographic root system Φ of type F_4 , the vertex set of $Z(\Phi)$ splits into three B_4 -orbits. We can construct an almost cover of size $24 = \operatorname{rk}(Z(\Phi))$, but we do not see if our method suits a proof that this is best possible.

7 Conclusion

We investigated how the polynomial method can be used to study almost covers of vertex sets of zopotopes and Coxeter permutahedra. In the meantime, Conjecture 2 was refuted by Gábor Damásdi, whereas Conjecture 11 was verified by Péter Frenkel.

References

- [1] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.
- [2] N. Alon and Z. Füredi, Covering the cube by affine hyperplanes, European Journal of Combinatorics 14 (1993), 79–83.
- [3] S. Ball and O. Serra, Punctured combinatorial Nullstellensätze, Combinatorica 29 (2009), 511–522.
- [4] A. Blokhuis, A.E. Brouwer, and T. Szőnyi, Covering all points except one, Journal of Algebraic Combinatorics 32 (2010,) 59–66.
- [5] A.E. Brouwer and A. Schrijver, The blocking number of an affine space, Journal of Combinatorial Theory, Series A 24 (1978), 251–253.
- [6] S. Fomin and N. Reading, Root systems and generalized associahedra, in: *Geometric Combinatorics*, IAS/Park City Mathematics Series, 13, American Mathematical Society, Providence, 2007, 63–131.
- [7] T. Godland and Z. Kabluchko, Projections and angle sums of belt polytopes and permutohedra, *Results in Mathematics* 78 (2023), #140, 29 pp.
- [8] G. Hegedüs and Gy. Károlyi, Covering the permutohedron by affine hyperplanes, Acta Mathematica Hungarica, to appear. See arXiv:2305.06202v3.
- C. Hohlweg, Permutahedra and Associahedra: Generalized associahedra from the geometry of finite reflection groups, in: Associahedra, Tamari Lattices and Related Structures, Progress in Mathematics, 299, Birkhäuser, Basel, 2012, 129–159.
- [10] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990.
- [11] R.E. Jamison, Covering finite fields with cosets of subspaces, Journal of Combinatorial Theory, Series A 22 (1977), 253–266.
- [12] G. Rote, The generalized combinatorial Lasoń-Alon-Zippel-Schwartz Nullstellensatz lemma, preprint, 2023, arXiv:2305.10900.
- [13] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, 153, Springer, New York, 1995.