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Abstract

Given two graphs H and G, the homomorphism density t(H,G) represents the probability that
a random mapping from V (H) to V (G) is a homomorphism. Sidorenko Conjecture states that for
any bipartite graph H, t(H,G) is greater or equal than t(K2, G)e(H) for every graph G.

Introducing a binary relation H ≽ T if and only if t(H,G)e(T ) ≥ t(T,G)e(H) for all graphs G,
we establish a partial order on the set of non-empty connected graphs. Employing a technique by
Kopparty and Rossman [10], which involves the use of entropy to define a linear program, we derive
several necessary and sufficient conditions for two trees T , F to satisfy T ≽ F . Furthermore, we
show how important results and open problems in extremal graph theory can be reframed using this
binary relation.

1 Introduction

One of the main objectives of extremal combinatorics is to study certain substructures in a large
combinatorial object to understand the influence of local pattern frequencies on a global structure.
This topic links many active areas of research, including the study of quasirandomness pioneered by
Rödl [14], Thomason [17] and Chung, Graham and Wilson [4], the theory of combinatorial limits
developed by Lovász and his collaborators, see [12], and the area of property testing in computer
science spearheaded by Goldreich, Goldwasser and Ron [8].

A homomorphism from a graph H to a graph G is a function f : V (H) → V (G) such that f(u)f(v) ∈
E(G) whenever uv ∈ E(H). We denote by Hom(H,G) the set of all possible homomorphisms between
H and G. Let us denote hom(H,G) = |Hom(H,G)|. The homomorphism density, t(H,G), is the
probability that a random function f : V (H) → V (G) is a homomorphism.

t(H,G) =
hom(H,G)

v(G)v(H)
.

Our focus is on proving inequalities for homomorphism densities of the following form:

t(F2, G) ≥ t(F1, G)α (1)

where F1 and F2 are fixed graphs, α > 0 and the inequality in (1) holds for every graph G. Inequalities
of this form are known as Sidorenko-type inequalities and several problems in extremal combinatorics
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Figure 1: A section of the poset for trees.

can be expressed in terms of these inequalities. For example, the well-known Sidorenko Conjecture [16]
states that t(H,G) ≥ t(K2, G)|E(H)| for every bipartite graph H. A systematic study of Sidorenko-
type inequalities for graph homomorphisms via the method of tropicalization was recently initiated
in [2, 3]. In [10], Kopparty and Rossman introduced a powerful method for using the information
theoretic notion of entropy together with linear programming to prove Sidorenko-type inequalities.
This approach is akin to the entropy-based approach which has seen recent success in the study of
Sidorenko’s Conjecture [5, 6] and other related problems [9, 11]. It was also used by Blekherman and
Raymond [1] to give an illuminating alternative proof of the result of Sağlam [15] that

t(Pk+2, G) ≥ t(Pk, G)
k+1
k−1 (2)

for all k ≥ 2 where, for all ℓ ≥ 1, Pℓ denotes the path with ℓ vertices and ℓ− 1 edges. This inequality
was first conjectured by Erdős and Simonovits [7]. For a recent generalization of this result, see [2,
Theorem 1.3].

Given two non-empty graphs H and T , we write H ≽ T to mean that t(H,G)e(T ) ≥ t(T,G)e(H) for
every graph G. This binary relation is a partial order on the set of non-empty connected graphs. In
Figure 1 we show the poset of some small trees.

2 The linear program.

Following the method introduced by Kopparty and Rossman, we reduce the problem of proving that
H ≽ T for forests H and T to solving a linear program. We obtained the full structure of the partial
order on all pairs of trees with at most 8 vertices. Also, we characterize trees H such that H ≽ Sk and
H ≽ P4, where Sk is the star on k vertices and P4 is the path on 4 vertices.
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Let LP (H,T ) be the following linear program. Let {w(φ) : φ ∈ Hom(H,T )} be the variables.

maximize
∑

e∈E(T )

∑
φ∈Hom(H,T )

µφ(e) · w(φ)

subject to
∑

φ∈Hom(H,T )

µφ(e) · w(φ) ≤ 1 ∀e ∈ E(T ),

∑
φ∈Hom(H,T )

µφ(v) · w(φ) ≤ 1 ∀v ∈ V (T ),

w(φ) ≥ 0 ∀φ ∈ Hom(H,T ).

Where µφ(v) = |φ−1(v)| for each v ∈ V (T ) and µφ(e) = |φ−1(e)| for each e ∈ E(T ).

Lemma 1. If H and T are forests such that the value of LP (H,T ) is equal to e(T ), then H ≽ T .

We also define the dual of the linear program. LetDLP (H,T ) be the dual of LP (H,T ) with variables
{y(m) : m ∈ V (T ) ∪ E(T )} defined as follows:

minimize
∑

v∈V (T )

y(v) +
∑

e∈E(T )

y(e)

subject to
∑

v∈V (T )

µφ(v) · y(v) +
∑

e∈E(T )

µφ(e) · y(e) ≥ e(H) ∀φ ∈ Hom(H,T ),

y(v) ≥ 0 ∀v ∈ V (T )

y(e) ≥ 0 ∀e ∈ E(T ).

Lemma 2. If H and T are non-empty graphs such that the value of DLP (H,T ) is less than e(T ),
then H ̸≽ T .

3 Main results.

Given two trees H and T , the following theorems give sufficient or necessary conditions for H ≽ T .
We let σ(H) be the minimum of |A|, |B| in the bipartition (A,B) for the tree.

Theorem 3. If H ≽ T , then
e(H)

σ(H)
≥ e(T )

σ(T )
.

The last theorem holds for any H and T bipartite graphs. For the sufficient condition, we say that a
fractional orientation of a graph T is a function f : V (T )×V (T ) → [0,∞) such that f(u, v)+f(v, u) = 1
for any edge uv ∈ E(T ) and f(u, v) = 0 if uv /∈ E(T ).

The out-degree and in-degree of a vertex v ∈ V (T ) are d+f (v) :=
∑

u∈V (T ) f(v, u) and d−f (v) :=∑
u∈V (T ) f(u, v), respectively.

Theorem 4. If there exists a fractional orientation of T such that, for all v ∈ V (T ),

d−f (v) · (v(H)− σ(H)) + d+f (v) · σ(H)

e(H)
≤ 1, (3)

then H ≽ T .

Using Theorem 3 and 4, we get the characterization for stars.

Corollary 5. Let k ≥ 3 and let H be a non-empty tree. Then H ≽ Sk if and only if e(H) ≥ (k−1)σ(H).
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Finally, the following gives a characterization for P4.

Theorem 6. Let H be a tree. Then H ≽ P4 if and only if H has at least four vertices.

Nevertheless, it is not easy to generalize the result of Theorem 6 to a more general case.

Theorem 7. Let H be a k-vertex near-star with ℓ leaves. If k+1
2 ≤ ℓ ≤ k − 3, then H ̸≽ Pk.

We believe that the following weaker generalization may hold. This statement, if true, would support
the rough intuition that path-like graphs are near the bottom of the partial order restricted to trees.

Conjecture 8. For any k ≥ 1, there exists n0(k) such that if H is a tree with at least n0(k) vertices,
then H ≽ P2k.
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