On the sum of several finite subsets in \mathbb{R}^2 *

Mario Huicochea^{†1}, René González-Martínez ^{‡2}, Amanda Montejano^{§3}, and David Suárez^{¶3}

¹Universidad Autónoma de San Luis Potosí ²Universidad Autónoma de Zacatecas ³UMDI, Facultad de Ciencias, UNAM Juriquilla, Querétaro, México

Abstract

Let $h \ge 2$ be an integer, $\mathbf{u} \in \mathbb{R}^2 \setminus \{(0,0)\}$, and A_1, A_2, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 . For each $i \in \{1, 2, \ldots, h\}$, denote by m_i the number of lines parallel to the line generated by the vector \mathbf{u} that intersect A_i . We show that

$$|A_1 + A_2 + \ldots + A_h| \ge \left(\left(\sum_{i=1}^h \frac{|A_i|}{m_i} \right) - (h-1) \right) \left(\left(\sum_{i=1}^h m_i \right) - (h-1) \right)$$

generalizing a statement of D. J. Grynkiewicz and O. Serra for h = 2. We also characterize the case of equality; that is, we describe the structure of finite 2-dimensional subsets of \mathbb{R}^2 which are extremal with respect to the inequality above. This also generalizes a result of G. A Freiman, D. Grynkiewicz, O. Serra and Y. V. Stanchescu.

1 Introduction

One of the most important problems in Additive Number Theory has been to determine nontrivial lower bounds for the cardinality of $A_1 + A_2 + \ldots + A_h = \{\mathbf{a}_1 + \mathbf{a}_2 + \ldots + \mathbf{a}_h \mid \mathbf{a}_i \in A_i \text{ for each } i \in \{1, 2, \ldots, h\}\}$, where A_1, A_2, \ldots, A_h are nonempty finite subsets of an abelian group G, see for instance [2, 7, 9, 11, 12, 13]. Particularly, there is interesting recent progress concerning this problem in \mathbb{R}^d . In this work, we only focus our attention in \mathbb{R}^2 . Given $\mathbf{u} \in \mathbb{R}^2 \setminus \{(0,0)\}$ and A_1, A_2, \ldots, A_h nonempty finite subsets of \mathbb{R}^2 , we give a lower bound of $|A_1 + A_2 + \ldots + A_h|$ in terms of the number of lines parallel to the line generated by \mathbf{u} which intersect A_i , for each $i \in \{1, 2, \ldots, h\}$. This was already done for two sets (h = 2) by Grynkiewicz and Serra [10]. Moreover, Freiman, Grynkiewicz, Serra and Stanchescu characterized the extremal 2-dimensional sets attaining such lower bound [5]. We generalize both results for any integer $h \geq 2$.

Given $\mathbf{u} \in \mathbb{R}^2$, we denote by $\langle \mathbf{u} \rangle$ the subspace (line) generated by \mathbf{u} . Let $\phi_{\langle \mathbf{u} \rangle} : \mathbb{R}^2 \to \mathbb{R}^2 / \langle \mathbf{u} \rangle$ the natural projection modulo $\langle \mathbf{u} \rangle$. For a finite subset A of \mathbb{R}^2 , let $\phi_{\langle \mathbf{u} \rangle}(A) = \{\phi_{\langle \mathbf{u} \rangle}(\mathbf{a}) | \mathbf{a} \in A\}$. Thus, if $\mathbf{u} \neq (0,0), |\phi_{\langle \mathbf{u} \rangle}(A)|$ is the number of lines parallel to $\langle \mathbf{u} \rangle$ that intersect A. As we already mentioned in the previous paragraph, Grynkiewicz and Serra were able to find a lower bound of |A+B| for nonempty subsets A and B of \mathbb{R}^2 in terms of $|\phi_{\langle \mathbf{u} \rangle}(A)|$ and $|\phi_{\langle \mathbf{u} \rangle}(B)|$. Here we give the precise statement.

^{*}Part of this research was supported by DGAPA PAPIIT IG100822.

[†]Email: dym@cimat.mx

[‡]Email: reneglzmtz@gmail.com

Email: amandamontejano@ciencias.unam.mx.

[¶]Email: suardavid@hotmail.com

Theorem 1 (Grynkiewicz-Serra). Let A and B be nonempty finite subsets of \mathbb{R}^2 . For every $\mathbf{u} \in \mathbb{R}^2 \setminus \{(0,0)\},\$

$$|A+B| \ge \left(\frac{|A|}{m} + \frac{|B|}{n} - 1\right)(m+n-1),$$
 (1)

where $m = |\phi_{\langle \mathbf{u} \rangle}(A)|$ and $n = |\phi_{\langle \mathbf{u} \rangle}(B)|$.

Proof. see [10, Thm. 1.3].

We generalize Theorem 1 for an arbitrary number of nonempty finite subsets of \mathbb{R}^2 .

Theorem 2. Let $h \ge 2$ be an integer, and let $A_1, \ldots A_h$ be nonempty finite subsets of \mathbb{R}^2 . For every $\mathbf{u} \in \mathbb{R}^2 \setminus \{(0,0)\},\$

$$|A_1 + A_2 + \ldots + A_h| \ge \left(\left(\sum_{i=1}^h \frac{|A_i|}{m_i} \right) - (h-1) \right) \left(\left(\sum_{i=1}^h m_i \right) - (h-1) \right)$$
(2)

where $m_i = |\phi_{\langle \mathbf{u} \rangle}(A_i)|$ for each $i \in \{1, 2, \dots, h\}$.

In order to characterized the extremal sets attaining equality in (2) we need to define some sets called *trapezoids*. For the sake of clarity, we will use a definition that varies slightly from the one originally presented in [5].

Definition 3. Let $\langle u_1, u_2 \rangle$ be an ordered base of \mathbb{R}^2 , and let $m, h, c \in \mathbb{Z}$ with $(h-1) + (m-1)c \geq 0$. We say that a finite nonempty 2-dimensional set $A \subset \mathbb{R}^2$ is a trapezoid of type $T_{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle}(m, h, c)$ if there is a vector $\mathbf{v} \in \mathbb{R}^2$ such that

$$M_{\langle u_1, u_2 \rangle}(A) + v = \{ (x, y) \in \mathbb{R}^2 \mid 0 \le y \le m - 1, \ 0 \le x \le (h - 1) + cy \},\$$

where $M_{(\boldsymbol{u}_1,\boldsymbol{u}_2)}: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear mapping that leads the ordered base $\langle \boldsymbol{u}_1, \boldsymbol{u}_2 \rangle$ to the canonical ordered base $\langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle$.

We shall note that the example showed in [5] as a standard trapezoid T(6, 19, 2, -1) correspond to the translation of any trapezoid of type $T_{\langle (1,2),(0,1)\rangle}(19, 6, -3)$, see Figure 1. In general, a standard trapezoid T(m, h, c, d) corresponds, after applying the linear transformation given by the matrix $M_{\langle (1,d),(0,1)\rangle} = \begin{pmatrix} -d & 1 \\ 1 & 0 \end{pmatrix}$, to a translation of any trapezoid of type $T_{\langle (1,d),(0,1)\rangle}(m, h, d-c)$.

Theorem 4. Let $A_1 \ldots, A_k$ be nonempty finite 2-dimensional subsets of \mathbb{R}^2 , and let $u \in \mathbb{R}^2$. If

$$|A_1 + \dots + A_k| = \left(\sum_{i=1}^k \left(\frac{|A_i|}{m_i}\right) - (k-1)\right) \left(\sum_{i=1}^k (m_i) - (k-1)\right),\tag{3}$$

where $m_i = |\phi_{\langle u_i \rangle}(A_i)|$ for $1 \leq i \leq k$, then each A_i is a trapezoid of type $T_{\langle u_1, u_2 \rangle}(m_i, h_i, c)$ for some ordered base $\langle u_1, u_2 \rangle$, and some integers h_1, \ldots, h_k , with common slope c.

The paper is organized as follows: Section 2 contains auxiliary results needed for proving Theorems 2 and 4. In particular, we present some properties of the technique known as (linear) compression. The proof of Theorem 2 is completed in Section 3. To prove Theorem 4 is a bit more technical. We present the strategy in Section 4.

Figure 1: The standard trapezoid T(6, 19, 2, -1) (depicted on the left) given as an example in [5] corresponds to the trapezoid of type $T_{\langle (1,2),(0,1)\rangle}(6, 19, -3)$ translated to the origin (depicted on the right). This can be seen by applying the linear transformation $M_{\langle (1,2),(0,1)\rangle}$ to T(6, 19, 2, -1).

2 Preliminaries

Let $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ be an ordered basis of \mathbb{R}^2 . For a finite subset $A \subset \mathbb{R}^2$ and $i \in \{1, 2\}$, the *linear compression* of A with respect to \mathbf{u}_i , denoted by $\mathbf{C}_i(A)$, is defined as follows. Take $j \in \{1, 2\} \setminus \{i\}$ and let $\mathbf{C}_i(A)$ be the set satisfying that for each $\mathbf{x} \in \langle \mathbf{u}_j \rangle$,

$$\phi_{\langle \mathbf{u}_j \rangle} \left(\mathbf{C}_i(A) \cap (\langle \mathbf{u}_i \rangle + \mathbf{x}) \right) = \{ 0, \mathbf{u}_i, 2\mathbf{u}_i, \cdots, (r-1)\mathbf{u}_i \} + \langle \mathbf{u}_j \rangle$$

where $r = |A \cap (\langle \mathbf{u}_i \rangle + \mathbf{x})|$ and, if r = 0, we consider $\mathbf{C}_i(A) \cap (\langle \mathbf{u}_i \rangle + \mathbf{x}) = \emptyset$. The compression of A with respect to the ordered basis $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ is then defined by $\mathbf{C}(A) = \mathbf{C}_2(\mathbf{C}_1(A))$. Several properties of compression can be found in [1, 6, 8, 10]; we just need a few of them. Observe that we have by definition that

$$|A| = |\mathbf{C}(A)|,\tag{4}$$

and

$$|\phi_{\langle \mathbf{u}_1 \rangle}(A)| = |\phi_{\langle \mathbf{u}_1 \rangle}(\mathbf{C}(A))|.$$
(5)

One of the main properties of compression is the following.

Lemma 5. For any nonempty finite subsets $A_1, A_2 \subset \mathbb{R}^2$, and an ordered basis $\langle u_1, u_2 \rangle$ of \mathbb{R}^2 , it happens that $\mathbf{C}(A_1 + A_2) \supseteq \mathbf{C}(A_1) + \mathbf{C}(A_2)$. In particular, $|A_1 + A_2| \ge |\mathbf{C}(A_1) + \mathbf{C}(A_2)|$.

Proof. See [6, Lemma 3.4].

We will also make use of the following well known fact.

Theorem 6 (Folklore). Let A_1, \ldots, A_h be finite nonempty subsets of a torsion-free abelian group. Then

$$|A_1 + A_2 + \ldots + A_h| \ge \left(\sum_{i=1}^h |A_i|\right) - (h-1),$$

and the equality is achieved when A_1, A_2, \ldots, A_h are arithmetic progressions with the same common difference.

Proof. See for instance [11, Theorem 1.4].

Let A_1, A_2, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 and, for each $i \in \{1, 2, \ldots, h\}$, let $\mathbf{C}(A_i)$ be the compression of A_i with respect to the ordered basis $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$. The projection $\phi_{\langle \mathbf{u}_1 \rangle}$ is a linear mapping, and the definition of $\mathbf{C}(A_i)$ implies that $\phi_{\langle \mathbf{u}_1 \rangle}(\mathbf{C}(A_i))$ is an arithmetic progression with difference \mathbf{u}_2 for each $i \in \{1, 2, \ldots, h\}$. From these facts and Theorem 6, it follows that

$$\left|\phi_{\langle \mathbf{u}_1 \rangle}\left(\mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_h)\right)\right| = \left(\sum_{i=1}^h \left|\phi_{\langle \mathbf{u}_1 \rangle}\left(\mathbf{C}(A_i)\right)\right|\right) - (h-1).$$
(6)

In order to prove Theorem 2, we prove the next inequality.

Lemma 7. Let A_1, A_2, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 , and let $\mathbf{C}(A_i)$ be the compression of A_i with respect to the ordered basis $\langle u_1, u_2 \rangle$. Then,

$$|A_1 + A_2 + \ldots + A_h| \ge |\mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_h)|.$$
(7)

Proof. By induction on h taking $A = A_1 + A_2 + \ldots + A_{h-1}$ and A_h , with the use of Lemma 5.

3 Proof of Theorem 2

Proof. We proceed by induction on h. If h = 2, the statement follows by Theorem 1. Consider now the sets $A = \mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_{h-1})$ and $B = \mathbf{C}(A_h)$ where, for each $i \in \{1, 2, \ldots, h\}$, $\mathbf{C}(A_i)$ is the compression of A_i with respect to the ordered basis $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}, \mathbf{u}^{\perp} \rangle$. Set $m = |\phi_{\langle \mathbf{u} \rangle}(A)|$ and $n = |\phi_{\langle \mathbf{u} \rangle}(B)|$. Then

$$|A_{1} + \ldots + A_{h}| \ge |\mathbf{C}(A_{1}) + \ldots + \mathbf{C}(A_{h-1}) + \mathbf{C}(A_{h})| \qquad (by \text{ Lemma 7})$$
$$= |A + B|$$
$$\ge \left(\frac{|A|}{m} + \frac{|B|}{n} - 1\right)(m + n - 1). \qquad (by \text{ Thm. 1}) \qquad (8)$$

Hence, by definition and (5),

r

$$n = |\phi_{\langle \mathbf{u} \rangle}(B)| = |\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_h))| = |\phi_{\langle \mathbf{u} \rangle}(A_h)| = m_h, \tag{9}$$

and

$$n = |\phi_{\langle \mathbf{u} \rangle}(A)| = |\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_1) + \mathbf{C}(A_2) + \dots + \mathbf{C}(A_{h-1}))|$$
$$= \left(\sum_{i=1}^{h-1} |\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_i))|\right) - (h-2) \qquad (by (6))$$

$$= \left(\sum_{i=1}^{h-1} \left|\phi_{\langle \mathbf{u}\rangle}\left(A_{i}\right)\right|\right) - (h-2) \qquad (by (5))$$
$$= \left(\sum_{i=1}^{h-1} m_{i}\right) - (h-2). \qquad (10)$$

Thus (9) and (10) yield that

$$m + n - 1 = \left(\sum_{i=1}^{h-1} m_i\right) - (h-2) + m_h - 1 = \left(\sum_{i=1}^h m_i\right) - (h-1).$$
(11)

By (4) we know $|B| = |\mathbf{C}(A_h)| = |A_h|$, and so, by (9), we get

$$\frac{|B|}{n} = \frac{|A_h|}{m_h}.$$
(12)

Now, since (4) and (5) imply $|\mathbf{C}(A_i)| = |A_i|$ and $|\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_i))| = |\phi_{\langle \mathbf{u} \rangle}(A_i)| = m_i$, it follows by definition and the induction hypothesis that

$$|A| = |\mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_{h-1})| \ge \left(\left(\sum_{i=1}^{h-1} \frac{|A_i|}{m_i} \right) - (h-2) \right) \left(\left(\sum_{i=1}^{h-1} m_i \right) - (h-2) \right).$$
(13)

Thus, (10) and (13) imply

$$\frac{|A|}{m} \ge \left(\sum_{i=1}^{h-1} \frac{|A_i|}{m_i}\right) - (h-2).$$
(14)

Finally, substituying (11), (12) and (14) in (8), we obtain

$$|A_{1} + \ldots + A_{h}| \ge \left(\frac{|A|}{m} + \frac{|B|}{n} - 1\right)(m + n - 1)$$

$$\ge \left(\left(\sum_{i=1}^{h-1} \frac{|A_{i}|}{m_{i}}\right) - (h - 2) + \frac{|A_{h}|}{m_{h}} - 1\right)\left(\left(\sum_{i=1}^{h} m_{i}\right) - (h - 1)\right),$$

$$= \left(\left(\sum_{i=1}^{h} \frac{|A_{i}|}{m_{i}}\right) - (h - 1)\right)\left(\left(\sum_{i=1}^{h} m_{i}\right) - (h - 1)\right),$$

and the prove is completed.

4 Sketch of the proof of Theorem 4

Observe that, if A is trapezoid of type $T_{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle}(m, h, c)$ for some ordered base $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ of \mathbb{R}^2 , and some integers m, h and c satisfying $(h-1) + (m-1)c \geq 0$ then, by definition, there is a vector \mathbf{v} such that

$$M_{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle} A + \mathbf{v} = \bigcup_{i=0}^{m-1} \{ (x, i) | 0 \le x \le (h-1) + ci \}.$$

Therefore,

$$|A| = m\left(h + \frac{c(m-1)}{2}\right). \tag{15}$$

With the use of (15) it is not hard to prove, by induction on k, the following.

Lemma 8. Let A_1, \ldots, A_k be trapezoids of type $T_{\langle u_1, u_2 \rangle}(m_i, h_i, c)$ for some ordered base $\langle u_1, u_2 \rangle$, integers m_i and h_i , for each $1 \leq i \leq h$, and a common slope c. Then $A_1 + \cdots + A_k$ is a trapezoid of type $T_{\langle u_1, u_2 \rangle}(\sum_{i=1}^k m_i - (k-1), \sum_{i=1}^k h_i - (k-1), c)$.

One of the key parts of the proof of Theorem 4 was to generalize a beautiful lemma which was used to prove Theorem 1 as well as the characterization of the extremal cases, see [10, 5]. For the sake of clarity, we present here only the statement for k = 3 and a sketch of its proof.

Lemma 9. Let I, J, K be nonempty finite subsets of \mathbb{R} with $min(|I|, |J|, |K|) \geq 2$. Let $a = \{a_i\}_I$, $b = \{b_j\}_J$ and $c = \{c_k\}_K$ sequences with $a_i, b_j, c_k > 0$ for $i \in I$, $j \in J$ and $k \in K$. For each $t \in I + J + K$, let $u_t(a, b, c) = max\{a_i + b_j + c_{k-i-j} : i \in I, j \in J, k - i - j \in K\}$. If

$$\frac{1}{|I|} \sum_{i \in I} a_i + \frac{1}{|J|} \sum_{j \in J} b_j + \frac{1}{|K|} \sum_{k \in K} c_k \le \frac{1}{|I| + |J| + |K| - 2} \sum_{t \in I + J + K} u_t(a, b, c).$$
(16)

If the equality holds then I, J and K are arithmetic progressions with common difference and the sequences a, b and c are also arithmetic progressions with common difference.

Proof. (sketch) For a sequence $\{x_i\}_{i\in L}$, denote by $\overline{x} = \frac{1}{|L|} \sum_{i\in L} x_i$ its average value. If $y = \{y_i\}_{i\in M}$ and $z = \{y_i\}_{i\in N}$ are also sequences, denote by $u^+(x, y, z)$ the subsequence of the |L|+|M|+|N|-2 elements in the sequence $u(x, y, z) = \{u_t(x, y, z) : t \in L + M + N\}$ which is well-defined in view of Theorem 6. Let $d = \{u_t(b, c) : t \in J + K\}$. First we shall prove that u(a, b, c) = u(a, d) and then we need to prove that $\overline{u^+(a, d^+)} \leq \overline{u^+(a, d)}$, which will lead us to show that

$$\overline{u^+(a,b,c)} \le \left(\frac{1}{|I|+|J|+|K|-2}\right) \sum_{t \in I+J+K} u_t(a,b,c).$$
(17)

From this position it is not hard to prove that

$$\frac{1}{|I|} \sum_{i \in I} a_i + \frac{1}{|J|} \sum_{j \in J} b_j + \frac{1}{|K|} \sum_{k \in K} c_k \le \frac{1}{|I| + |J| + |K| - 2} \sum_{t \in I + J + K} u_t(a, b, c)$$
(18)

Now, suppose that the equality holds if (16), we can see that I, J and K are arithmetic progressions with common difference. From here, one has to work to show that actually, the sequences a, b and c are arithmetic progression with a common difference.

To prove Theorem 4 we define one set for each $1 \leq i \leq k$ as $I_i = \phi_{\langle \mathbf{u} \rangle}(A_i)$, and work to obtain the base $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ and the parameters of the trapezoids in terms of the differences of the arithmetic progression given by Lemma 9.

References

- [1] B. Bollobás and I. Leader, Sums in the grid, Discrete Math. 162 (1996), 31-48.
- [2] G. A. Freiman, Foundations of a Structural Theory of Set Addition, Transl. Math. Monogr. 37 Amer. Math. Soc. (1973).
- [3] A. Mudgal, Difference sets in higher dimensions, Math. Proc. Cambridge Philos. Soc. 171 (2021), 467-480.
- [4] D. Conlon and J. Lim, *Difference sets in* \mathbb{R}^d , prepint available at arXiv:2110.09053 [math.CO].
- [5] G. A. Freiman, D. Grynkiewicz, O. Serra, and Y.V. Stanchescu, Inverse additive problems for Minkowski sumsets I, Collectanea mathematica, 63(3) (2012), 261-286.
- [6] R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), 3995-4024.
- [7] A. Geroldinger and I. Ruzsa, *Combinatorial Number Theory and Additive Group Theory*, Birkhäuser (2009).
- [8] B. Green and T. Tao, Compressions, convex geometry and the Freiman-Bilu theorem, Q. J. Math. 57 (2006), 495-504.
- [9] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30 Springer (2013).
- [10] D. J. Grynkiewicz and O. Serra, Properties of two dimensional sets with small sumset, J. Combin. Theory Ser. A 117 (2010), 164-188.
- [11] M. Nathanson, Additive Number Theory, Graduate Texts in Mathematics 165 Springer (1996).
- [12] I. Z. Ruzsa, Sums of sets in several dimensions, Combinatorica 14 (1994), 485-490.
- [13] T. Tao and H. V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math. 105 Cambridge University Press (2006).