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Abstract

Let h > 2 be an integer, u € R?\ {(0,0)}, and A;, A, ..., Aj be nonempty finite subsets of R.
For each i € {1,2,...,h}, denote by m; the number of lines parallel to the line generated by the
vector u that intersect 4;. We show that

|AL + Ag + ...+ Ayl > ((Z'é) (h1)> <<Zmi> (h1)>

generalizing a statement of D. J. Grynkiewicz and O. Serra for h = 2. We also characterize the
case of equality; that is, we describe the structure of finite 2-dimensional subsets of R? which are
extremal with respect to the inequality above. This also generalizes a result of G. A Freiman, D.
Grynkiewicz, O. Serra and Y. V. Stanchescu.

1 Introduction

One of the most important problems in Additive Number Theory has been to determine nontrivial
lower bounds for the cardinality of A + As + ...+ A, ={aj +as+ ... +a, | a; € A; foreach i €
{1,2,...,h}}, where Aj, Ay, ..., A} are nonempty finite subsets of an abelian group G, see for instance
[2, 7, 9, [1T), 12}, 13]. Particularly, there is interesting recent progress concerning this problem in R?. In
this work, we only focus our attention in R?. Given u € R?\ {(0,0)} and Ay, As, ..., A; nonempty
finite subsets of R?, we give a lower bound of |A; + As + ... + Ay| in terms of the number of lines
parallel to the line generated by u which intersect A;, for each i € {1,2,...,h}. This was already
done for two sets (h = 2) by Grynkiewicz and Serra [10]. Moreover, Freiman, Grynkiewicz, Serra and
Stanchescu characterized the extremal 2-dimensional sets attaining such lower bound [5]. We generalize
both results for any integer h > 2.

Given u € R?, we denote by (u) the subspace (line) generated by u. Let ¢, : R? — R?/(u) the
natural projection modulo (u). For a finite subset A of R?, let ¢y (A) = {¢(a)|a € A}. Thus, if
u # (0,0), | (A)| is the number of lines parallel to (u) that intersect A. As we already mentioned in
the previous paragraph, Grynkiewicz and Serra were able to find a lower bound of | A+ B| for nonempty
subsets A and B of R? in terms of |@y)(A)| and |¢y)(B)|. Here we give the precise statement.
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Theorem 1 (Grynkiewicz-Serra). Let A and B be nonempty finite subsets of R%. For every u €

R?\ {(0,0)},
]A+B|Z<‘Tnm+@—l>(m+n—l), (1)
where m = |¢)<u>(A)\ and n = ]¢<u>(B)\.

Proof. see [10, Thm. 1.3]. O

We generalize Theorem (1| for an arbitrary number of nonempty finite subsets of R2.

Theorem 2. Let h > 2 be an integer, and let Ay, ... A be nonempty finite subsets of R%. For every
u e R\ {(0,0)},

h |A| h
|A1 + Ao+ ...+ Ap| > ((Zm’> —(h—l)) ((Zml> —(h—1)> (2)
i=1 " i=1

where m; = |¢uy(Ai)| for eachi € {1,2,...,h}.

In order to characterized the extremal sets attaining equality in we need to define some sets called
trapezoids. For the sake of clarity, we will use a definition that varies slightly from the one originally
presented in [5].

Definition 3. Let (u1, u) be an ordered base of R%, and let m,h,c € Z with (h — 1) + (m — 1)c > 0.
We say that a finite nonempty 2-dimensional set A C R? is a trapezoid of type Tuy us) (M By c) if there
is a vector v € R? such that

My ) (A) +v={(z,y) eR*|0 <y <m—1, 0<z < (h—1)+ ey},

where My, uy) : R? — R? is the linear mapping that leads the ordered base {uy,up) to the canonical
ordered base (ej, €2).

We shall note that the example showed in [5] as a standard trapezoid T'(6, 19,2, —1) correspond to the
translation of any trapezoid of type T{(1 2) (0,1)) (19,6, —3), see Figure In general, a standard trapezoid
T'(m, h,c,d) corresponds, after applying the linear transformation given by the matrix M g) (0,1)) =

(—1d [1)>’ to a translation of any trapezoid of type T(1 4y (0,1))(m, h,d — ¢).

Theorem 4. Let A; ..., A, be nonempty finite 2-dimensional subsets of R%, and let u € R?. If

k k
|A1+-'-+Ak|=<z<|ii|>_(k_1)> (Z(mi)—(k:—l)>, (3)

i=1 =1

where m; = [¢y(Ai)| for 1 < i < k, then each A; is a trapezoid of type T(y, uy) (i, hi,c) for some
ordered base (uy, uz), and some integers hi, ..., hg, with common slope c.

The paper is organized as follows: Section [2| contains auxiliary results needed for proving Theorems
and In particular, we present some properties of the technique known as (linear) compression.
The proof of Theorem [2] is completed in Section [3] To prove Theorem {4 is a bit more technical. We
present the strategy in Section [}



Discrete Mathematics Days, Alcald de Henares, July 3-5, 2024

------

Figure 1: The standard trapezoid 7'(6,19,2,—1) (depicted on the left) given as an example in [5]
corresponds to the trapezoid of type T<(1,2),(0,1)>(6, 19, —3) translated to the origin (depicted on the
right). This can be seen by applying the linear transformation M 2y (0,1, to T'(6,19,2,—1).

2 Preliminaries

Let (u;,us) be an ordered basis of R?. For a finite subset A C R? and i € {1, 2}, the linear compression
of A with respect to u;, denoted by C;(A), is defined as follows. Take j € {1,2}\ {i} and let C;(A) be
the set satisfying that for each x € (u;),

¢<Uj> (Cl(A) N (<u1> + X)) = {0’ u;, 2ug, -, (T - 1)ui} + <uj>a

where r = |[AN ((w;) +x) | and, if » = 0, we consider C;(A) N ((u;) + x) = 0. The compression of A
with respect to the ordered basis (uj,uz) is then defined by C(A) = Cy(Ci(A)). Several properties
of compression can be found in [l [6] [8, 10]; we just need a few of them. Observe that we have by
definition that

4] = |C(4), (4)

and
1P (A)] = [Py (C(A))]. (5)

One of the main properties of compression is the following.

Lemma 5. For any nonempty finite subsets A1, As C R2, and an ordered basis {ui,us) of R?, it
happens that C(A; + Ag) D C(A;1) + C(A2). In particular, |A; + As| > |C(A1) + C(A42)|.

Proof. See [0, Lemma 3.4]. O
We will also make use of the following well known fact.
Theorem 6 (Folklore). Let Ay, ..., Ay be finite nonempty subsets of a torsion-free abelian group. Then
h
A1+ Ag + ..+ Ap| > (Z’AJ) — (h—1),
i=1

and the equality is achieved when Ay, As, ..., An are arithmetic progressions with the same common
difference.

Proof. See for instance [11, Theorem 1.4]. O



Discrete Mathematics Days, Alcald de Henares, July 3-5, 2024

Let Ay, As, ..., Ay be nonempty finite subsets of R? and, for each i € {1,2,...,h}, let C(A;) be the
compression of A; with respect to the ordered basis (uj, uz). The projection ®(uy) 1s a linear mapping,
and the definition of C(4;) implies that ¢,,) (C(A;)) is an arithmetic progression with difference ug
for each i € {1,2,...,h}. From these facts and Theorem @ it follows that

h
|Guy) (C(A1) + C(A2) + ...+ C(Ay))| = (Z |6 u) (C(Ai))!) — (h=1). (6)
i=1

In order to prove Theorem [, we prove the next inequality.

Lemma 7. Let Ay, Ao, ..., Ay be nonempty finite subsets of R?, and let C(A;) be the compression of
A; with respect to the ordered basis (uy, up). Then,

[A1+ Ao+ ...+ Ap| =2 |C(A1) + C(A2) + ... + C(4y)|. (7)
Proof. By induction on h taking A = Ay + As + ...+ Ap_1 and Ay, with the use of Lemma O

3 Proof of Theorem [2

Proof. We proceed by induction on h. If b = 2, the statement follows by Theorem [1} Consider now
the sets A = C(A41) + C(A2) + ...+ C(Aj—1) and B = C(Ay) where, for each ¢ € {1,2,...,h}, C(4;)
is the compression of A; with respect to the ordered basis (uj,us) = (u,ut). Set m = |y (A)] and
n = |¢w)(B)|. Then

|Ay 4.+ Ap| > |C(A1) + ... + C(Ap_1) + C(A4p)] (by Lemma m)
— A+ B
><’;}41—|—’§|—1>(m+n—1). (byThm.) (8)
Hence, by definition and ,
n = |y (B)| = |9 (C(An))| = [Py (An)| = ma, 9)
and
m = |¢ (A ) (C(A1) + C(A2) + ... + C(Ap-1))|
h—1
= ( | D) i))\) —(h=2) (by @)
-
= <Z}¢ > —(h—2) (vy @)
-
_ ( m> _9). (10)
=1

Thus @ and (10 yield that

h—1 h
m+n—1:<2mi>—(h—2)+mh—1:(ZmZ)—(h—l). (11)

i=1 i=1
By () we know |B| = |C(A)| = |A4l, and so, by (9), we get

1Bl _ Al

. (12)
n mp,
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Now, since and imply |C(4;)| = |A;] and [¢)(C(A:))| = |pwy(Ai)| = my, it follows by
definition and the induction hypothesis that

h h—1
4] = (A1) + C(Ag) + ...+ C(Ap_1)] _<<z ) 2)><(Zmi>—(h—2)>. (13)
=1 =1

Thus, ) and (13)) imply

h—1
’m“” > <Z |1‘74L> —(h—2). (14)
i=1 "

Finally, substituying , and in , we obtain

1AL+ .. +A[><A| ‘|_1)(m+n_1)
m n

()02 (8) o)
([4)-0 ) (8) o)

and the prove is completed. O

4 Sketch of the proof of Theorem

Observe that, if A is trapezoid of type Ty, u2>(m, h,c) for some ordered base (uj,ug) of R?, and some

integers m, h and c satisfying (h — 1) 4 (m — 1)c > 0 then, by definition, there is a vector v such that
m—1
MuyunA+v = J{(@d0<z < (h—1)+ci}.
i=0
Therefore,

1Al = m (h+c(m2_1)>. (15)

With the use of it is not hard to prove, by induction on k, the following.

Lemma 8. Let Ay, ..., Ay be trapezoids of type Ty, uy,) (M, hi, ) for some ordered base (w1, uz), inte-
gers m; and h;, for each 1 < i < h, and a common slope c. Then Ay + ---+ Ay is a trapezoid of type

Tt ) (O s — (k= 1), 58 by — (k= 1), ¢).

One of the key parts of the proof of Theorem [ was to generalize a beautiful lemma which was used
to prove Theorem [l| as well as the characterization of the extremal cases, see [10 [5]. For the sake of
clarity, we present here only the statement for £k = 3 and a sketch of its proof.

Lemma 9. Let I,J, K be nonempty finite subsets of R with min(|I|,|J|,|K|) > 2. Let a = {a;}r,
= {bj}s and ¢ = {cr}Kk sequences with a;,bj,c;, > 0 for i € I, j € J and k € K. For each
tel+J+ K, let uy(a,b,c) :max{ai—i-bj%—ck,i,j:ief,j eJk—i—jeK}. If

i — Y * 1
P mzfﬂmzc’“ TR, X e 1o

el tel+J+K

If the equality holds then I, J and K are arithmetic progressions with common difference and the
sequences a, b and ¢ are also arithmetic progressions with common difference.
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Proof. (sketch) For a sequence {x;};cr, denote by T = ﬁ Y icr Ti its average value. If y = {y;}iem
and z = {y; }ien are also sequences, denote by u™(z,y, z) the subsequence of the |L|+|M| + |N| — 2
elements in the sequence u(z,y, z) = {u(z,y,2) : t € L + M + N} which is well-defined in view of
Theorem [6] Let d = {u(b,c) : t € J + K}. First we shall prove that u(a,b,c) = u(a,d) and then we
need to prove that ut(a,dt) < ut(a,d), which will lead us to show that

B 1
u+(a’b’c)§<|l|+|J|+K|—2) Z ut(a, b, c). (17)

tel+J+K

From this position it is not hard to prove that

1 1 1 1
_ a; + — b + — Ck S Ut(a, b7 C) (18)
M2 2R 2 S IR 2, 2

Now, suppose that the equality holds if , we can see that I, J and K are arithmetic progressions
with common difference. From here, one has to work to show that actually, the sequences a, b and ¢
are arithmetic progression with a common difference. O

To prove Theorem |4 we define one set for each 1 < i < k as I; = ¢y (4;), and work to obtain
the base (uj,u2) and the parameters of the trapezoids in terms of the differences of the arithmetic
progression given by Lemma [9]
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