On the sum of several finite subsets in \mathbb{R}^2 *

Mario Huicochea^{†1}, René González-Martínez ^{‡2}, Amanda Montejano^{§3}, and David Suárez^{¶3}

 1 Universidad Autónoma de San Luis Potosí ²Universidad Autónoma de Zacatecas ³UMDI, Facultad de Ciencias, UNAM Juriquilla, Querétaro, México

Abstract

Let $h \geq 2$ be an integer, $\mathbf{u} \in \mathbb{R}^2 \setminus \{(0,0)\},\$ and A_1, A_2, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 . For each $i \in \{1, 2, \ldots, h\}$, denote by m_i ; the number of lines parallel to the line generated by the vector **u** that intersect A_i . We show that

$$
|A_1 + A_2 + ... + A_h| \ge \left(\left(\sum_{i=1}^h \frac{|A_i|}{m_i} \right) - (h-1) \right) \left(\left(\sum_{i=1}^h m_i \right) - (h-1) \right)
$$

generalizing a statement of D. J. Grynkiewicz and O. Serra for $h = 2$. We also characterize the case of equality; that is, we describe the structure of finite 2-dimensional subsets of \mathbb{R}^2 which are extremal with respect to the inequality above. This also generalizes a result of G. A Freiman, D. Grynkiewicz, O. Serra and Y. V. Stanchescu.

1 Introduction

One of the most important problems in Additive Number Theory has been to determine nontrivial lower bounds for the cardinality of $A_1 + A_2 + \ldots + A_h = \{a_1 + a_2 + \ldots + a_h \mid a_i \in A_i \text{ for each } i \in \mathbb{R}\}$ $\{1, 2, \ldots, h\}\}\,$, where A_1, A_2, \ldots, A_h are nonempty finite subsets of an abelian group G, see for instance [\[2,](#page-5-0) [7,](#page-5-1) [9,](#page-5-2) [11,](#page-5-3) [12,](#page-5-4) [13\]](#page-5-5). Particularly, there is interesting recent progress concerning this problem in \mathbb{R}^d . In this work, we only focus our attention in \mathbb{R}^2 . Given $\mathbf{u} \in \mathbb{R}^2 \setminus \{(0,0)\}\$ and A_1, A_2, \ldots, A_h nonempty finite subsets of \mathbb{R}^2 , we give a lower bound of $|A_1 + A_2 + \ldots + A_h|$ in terms of the number of lines parallel to the line generated by **u** which intersect A_i , for each $i \in \{1, 2, ..., h\}$. This was already done for two sets $(h = 2)$ by Grynkiewicz and Serra [\[10\]](#page-5-6). Moreover, Freiman, Grynkiewicz, Serra and Stanchescu characterized the extremal 2-dimensional sets attaining such lower bound [\[5\]](#page-5-7). We generalize both results for any integer $h > 2$.

Given $\mathbf{u} \in \mathbb{R}^2$, we denote by $\langle \mathbf{u} \rangle$ the subspace (line) generated by \mathbf{u} . Let $\phi_{\langle \mathbf{u} \rangle} : \mathbb{R}^2 \to \mathbb{R}^2 / \langle \mathbf{u} \rangle$ the natural projection modulo $\langle \mathbf{u} \rangle$. For a finite subset A of \mathbb{R}^2 , let $\phi_{\langle \mathbf{u} \rangle}(A) = \{ \phi_{\langle \mathbf{u} \rangle}(\mathbf{a}) | \mathbf{a} \in A \}$. Thus, if $\mathbf{u} \neq (0,0), |\phi_{\langle \mathbf{u} \rangle}(A)|$ is the number of lines parallel to $\langle \mathbf{u} \rangle$ that intersect A. As we already mentioned in the previous paragraph, Grynkiewicz and Serra were able to find a lower bound of $|A+B|$ for nonempty subsets A and B of \mathbb{R}^2 in terms of $|\phi_{\langle {\bf u}\rangle}(A)|$ and $|\phi_{\langle {\bf u}\rangle}(B)|$. Here we give the precise statement.

[∗]Part of this research was supported by DGAPA PAPIIT IG100822.

[†]Email: dym@cimat.mx

[‡]Email: reneglzmtz@gmail.com

[§]Email: amandamontejano@ciencias.unam.mx.

[¶]Email: suardavid@hotmail.com

Theorem 1 (Grynkiewicz-Serra). Let A and B be nonempty finite subsets of \mathbb{R}^2 . For every $\mathbf{u} \in$ $\mathbb{R}^2 \setminus \{(0,0)\},\$

$$
|A + B| \ge \left(\frac{|A|}{m} + \frac{|B|}{n} - 1\right)(m + n - 1),\tag{1}
$$

where $m = |\phi_{\langle {\bf u} \rangle}(A)|$ and $n = |\phi_{\langle {\bf u} \rangle}(B)|$.

Proof. see [\[10,](#page-5-6) Thm. 1.3].

We generalize Theorem [1](#page-1-0) for an arbitrary number of nonempty finite subsets of \mathbb{R}^2 .

Theorem 2. Let $h \geq 2$ be an integer, and let A_1, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 . For every $\mathbf{u} \in \mathbb{R}^2 \setminus \{ (0,0) \},\$

$$
|A_1 + A_2 + \ldots + A_h| \ge \left(\left(\sum_{i=1}^h \frac{|A_i|}{m_i} \right) - (h-1) \right) \left(\left(\sum_{i=1}^h m_i \right) - (h-1) \right) \tag{2}
$$

where $m_i = |\phi_{\langle \mathbf{u} \rangle}(A_i)|$ for each $i \in \{1, 2, \ldots, h\}.$

In order to characterized the extremal sets attaining equality in [\(2\)](#page-1-1) we need to define some sets called trapezoids. For the sake of clarity, we will use a definition that varies slightly from the one originally presented in [\[5\]](#page-5-7).

Definition 3. Let $\langle u_1, u_2 \rangle$ be an ordered base of \mathbb{R}^2 , and let $m, h, c \in \mathbb{Z}$ with $(h-1) + (m-1)c \geq 0$. We say that a finite nonempty 2-dimensional set $A \subset \mathbb{R}^2$ is a trapezoid of type $T_{\langle u_1, u_2 \rangle}(m, h, c)$ if there is a vector $v \in \mathbb{R}^2$ such that

$$
M_{\langle u_1, u_2 \rangle}(A) + v = \{ (x, y) \in \mathbb{R}^2 \mid 0 \le y \le m - 1, \ 0 \le x \le (h - 1) + cy \},\
$$

where $M_{(u_1,u_2)}:\mathbb{R}^2\to\mathbb{R}^2$ is the linear mapping that leads the ordered base $\langle u_1,u_2\rangle$ to the canonical ordered base $\langle e_1, e_2 \rangle$.

We shall note that the example showed in [\[5\]](#page-5-7) as a standard trapezoid $T(6, 19, 2, -1)$ correspond to the translation of any trapezoid of type $T_{\langle (1,2),(0,1) \rangle}(19,6,-3)$, see Figure [1.](#page-1-2) In general, a standard trapezoid $T(m, h, c, d)$ corresponds, after applying the linear transformation given by the matrix $M_{\langle (1,d),(0,1)\rangle}$ $\begin{pmatrix} -d & 1 \\ 1 & 0 \end{pmatrix}$, to a translation of any trapezoid of type $T_{\langle (1,d),(0,1)\rangle}(m, h, d-c)$.

Theorem 4. Let $A_1 \ldots, A_k$ be nonempty finite 2-dimensional subsets of \mathbb{R}^2 , and let $u \in \mathbb{R}^2$. If

$$
|A_1 + \dots + A_k| = \left(\sum_{i=1}^k \left(\frac{|A_i|}{m_i}\right) - (k-1)\right) \left(\sum_{i=1}^k (m_i) - (k-1)\right),\tag{3}
$$

where $m_i = |\phi_{\langle \mathbf{u} \rangle}(A_i)|$ for $1 \leq i \leq k$, then each A_i is a trapezoid of type $T_{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle}(m_i, h_i, c)$ for some ordered base $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$, and some integers h_1, \ldots, h_k , with common slope c.

The paper is organized as follows: Section [2](#page-2-0) contains auxiliary results needed for proving Theorems [2](#page-1-3) and [4.](#page-1-4) In particular, we present some properties of the technique known as (linear) compression. The proof of Theorem [2](#page-1-3) is completed in Section [3.](#page-3-0) To prove Theorem [4](#page-1-4) is a bit more technical. We present the strategy in Section [4.](#page-4-0)

 \Box

Figure 1: The standard trapezoid $T(6, 19, 2, -1)$ (depicted on the left) given as an example in [\[5\]](#page-5-7) corresponds to the trapezoid of type $T_{\langle (1,2),(0,1)\rangle}(6,19,-3)$ translated to the origin (depicted on the right). This can be seen by applying the linear transformation $M_{\langle (1,2),(0,1)\rangle}$ to $T(6,19,2,-1)$.

2 Preliminaries

Let $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ be an ordered basis of \mathbb{R}^2 . For a finite subset $A \subset \mathbb{R}^2$ and $i \in \{1,2\}$, the *linear compression* of A with respect to \mathbf{u}_i , denoted by $\mathbf{C}_i(A)$, is defined as follows. Take $j \in \{1,2\} \setminus \{i\}$ and let $\mathbf{C}_i(A)$ be the set satisfying that for each $\mathbf{x} \in \langle \mathbf{u}_i \rangle$,

$$
\phi_{\langle \mathbf{u}_j \rangle} (\mathbf{C}_i(A) \cap (\langle \mathbf{u}_i \rangle + \mathbf{x})) = \{0, \mathbf{u}_i, 2\mathbf{u}_i, \cdots, (r-1)\mathbf{u}_i\} + \langle \mathbf{u}_j \rangle,
$$

where $r = |A \cap (\langle \mathbf{u}_i \rangle + \mathbf{x})|$ and, if $r = 0$, we consider $\mathbf{C}_i(A) \cap (\langle \mathbf{u}_i \rangle + \mathbf{x}) = \emptyset$. The compression of A with respect to the ordered basis $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ is then defined by $\mathbf{C}(A) = \mathbf{C}_2(\mathbf{C}_1(A))$. Several properties of compression can be found in $[1, 6, 8, 10]$ $[1, 6, 8, 10]$ $[1, 6, 8, 10]$ $[1, 6, 8, 10]$; we just need a few of them. Observe that we have by definition that

$$
|A| = |\mathbf{C}(A)|,\tag{4}
$$

and

$$
|\phi_{\langle \mathbf{u}_1 \rangle}(A)| = |\phi_{\langle \mathbf{u}_1 \rangle}(\mathbf{C}(A))|.
$$
\n(5)

One of the main properties of compression is the following.

Lemma 5. For any nonempty finite subsets $A_1, A_2 \subset \mathbb{R}^2$, and an ordered basis $\langle u_1, u_2 \rangle$ of \mathbb{R}^2 , it happens that $\mathbf{C}(A_1 + A_2) \supseteq \mathbf{C}(A_1) + \mathbf{C}(A_2)$. In particular, $|A_1 + A_2| \geq |\mathbf{C}(A_1) + \mathbf{C}(A_2)|$.

Proof. See [\[6,](#page-5-9) Lemma 3.4].

We will also make use of the following well known fact.

Theorem 6 (Folklore). Let A_1, \ldots, A_h be finite nonempty subsets of a torsion-free abelian group. Then

$$
|A_1 + A_2 + \ldots + A_h| \ge \left(\sum_{i=1}^h |A_i|\right) - (h-1),
$$

and the equality is achieved when A_1, A_2, \ldots, A_h are arithmetic progressions with the same common difference.

Proof. See for instance [\[11,](#page-5-3) Theorem 1.4].

 \Box

 \Box

Let A_1, A_2, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 and, for each $i \in \{1, 2, \ldots, h\}$, let $\mathbf{C}(A_i)$ be the compression of A_i with respect to the ordered basis $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$. The projection $\phi_{\langle \mathbf{u}_1 \rangle}$ is a linear mapping, and the definition of $\mathbf{C}(A_i)$ implies that $\phi_{\langle \mathbf{u}_1 \rangle}(\mathbf{C}(A_i))$ is an arithmetic progression with difference \mathbf{u}_2 for each $i \in \{1, 2, \ldots, h\}$. From these facts and Theorem [6,](#page-2-1) it follows that

$$
\left|\phi_{\langle \mathbf{u}_1\rangle}(\mathbf{C}(A_1)+\mathbf{C}(A_2)+\ldots+\mathbf{C}(A_h))\right| = \left(\sum_{i=1}^h \left|\phi_{\langle \mathbf{u}_1\rangle}(\mathbf{C}(A_i))\right|\right) - (h-1). \tag{6}
$$

In order to prove Theorem [2](#page-1-3) , we prove the next inequality.

Lemma 7. Let A_1, A_2, \ldots, A_h be nonempty finite subsets of \mathbb{R}^2 , and let $\mathbf{C}(A_i)$ be the compression of A_i with respect to the ordered basis $\langle u_1, u_2 \rangle$. Then,

$$
|A_1 + A_2 + \ldots + A_h| \geq |\mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_h)|. \tag{7}
$$

Proof. By induction on h taking $A = A_1 + A_2 + \ldots + A_{h-1}$ and A_h , with the use of Lemma [5.](#page-2-2) \Box

3 Proof of Theorem [2](#page-1-3)

Proof. We proceed by induction on h. If $h = 2$, the statement follows by Theorem [1.](#page-1-5) Consider now the sets $A = \mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_{h-1})$ and $B = \mathbf{C}(A_h)$ where, for each $i \in \{1, 2, \ldots, h\}$, $\mathbf{C}(A_i)$ is the compression of A_i with respect to the ordered basis $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}, \mathbf{u}^\perp \rangle$. Set $m = |\phi_{\langle \mathbf{u} \rangle}(A)|$ and $n = |\phi_{\langle \mathbf{u} \rangle}(B)|$. Then

$$
|A_1 + \ldots + A_h| \ge |\mathbf{C}(A_1) + \ldots + \mathbf{C}(A_{h-1}) + \mathbf{C}(A_h)|
$$
 (by Lemma 7)
= $|A + B|$

$$
\ge \left(\frac{|A|}{m} + \frac{|B|}{n} - 1\right)(m + n - 1).
$$
 (by Thm. 1) (8)

Hence, by definition and [\(5\)](#page-2-3),

$$
n = |\phi_{\langle \mathbf{u} \rangle}(B)| = |\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_h))| = |\phi_{\langle \mathbf{u} \rangle}(A_h)| = m_h,
$$
\n(9)

and

$$
m = |\phi_{\langle \mathbf{u} \rangle}(A)| = |\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_1) + \mathbf{C}(A_2) + \dots + \mathbf{C}(A_{h-1}))|
$$

=
$$
\left(\sum_{i=1}^{h-1} |\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_i))|\right) - (h-2)
$$
 (by (6))

$$
= \left(\sum_{i=1}^{h-1} |\phi_{\langle \mathbf{u} \rangle} (A_i)|\right) - (h-2)
$$
\n
$$
= \left(\sum_{i=1}^{h-1} m_i\right) - (h-2).
$$
\n(10)

Thus [\(9\)](#page-3-3) and [\(10\)](#page-3-4) yield that

$$
m + n - 1 = \left(\sum_{i=1}^{h-1} m_i\right) - (h - 2) + m_h - 1 = \left(\sum_{i=1}^{h} m_i\right) - (h - 1). \tag{11}
$$

By [\(4\)](#page-2-4) we know $|B| = |\mathbf{C}(A_h)| = |A_h|$, and so, by [\(9\)](#page-3-3), we get

$$
\frac{|B|}{n} = \frac{|A_h|}{m_h}.\tag{12}
$$

Now, since [\(4\)](#page-2-4) and [\(5\)](#page-2-3) imply $|\mathbf{C}(A_i)| = |A_i|$ and $|\phi_{\langle \mathbf{u} \rangle}(\mathbf{C}(A_i))| = |\phi_{\langle \mathbf{u} \rangle}(A_i)| = m_i$, it follows by definition and the induction hypothesis that

$$
|A| = |\mathbf{C}(A_1) + \mathbf{C}(A_2) + \ldots + \mathbf{C}(A_{h-1})| \ge \left(\left(\sum_{i=1}^{h-1} \frac{|A_i|}{m_i} \right) - (h-2) \right) \left(\left(\sum_{i=1}^{h-1} m_i \right) - (h-2) \right). \tag{13}
$$

Thus, (10) and (13) imply

$$
\frac{|A|}{m} \ge \left(\sum_{i=1}^{h-1} \frac{|A_i|}{m_i}\right) - (h-2). \tag{14}
$$

Finally, substituying (11) , (12) and (14) in (8) , we obtain

$$
|A_1 + ... + A_h| \ge \left(\frac{|A|}{m} + \frac{|B|}{n} - 1\right)(m + n - 1)
$$

$$
\ge \left(\left(\sum_{i=1}^{h-1} \frac{|A_i|}{m_i}\right) - (h - 2) + \frac{|A_h|}{m_h} - 1\right) \left(\left(\sum_{i=1}^h m_i\right) - (h - 1)\right),
$$

$$
= \left(\left(\sum_{i=1}^h \frac{|A_i|}{m_i}\right) - (h - 1)\right) \left(\left(\sum_{i=1}^h m_i\right) - (h - 1)\right),
$$

and the prove is completed.

4 Sketch of the proof of Theorem [4](#page-1-4)

Observe that, if A is trapezoid of type $T_{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle}(m, h, c)$ for some ordered base $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ of \mathbb{R}^2 , and some integers m, h and c satisfying $(h-1) + (m-1)c \ge 0$ then, by definition, there is a vector **v** such that

$$
M_{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle} A + \mathbf{v} = \bigcup_{i=0}^{m-1} \{ (x, i) | 0 \le x \le (h-1) + ci \}.
$$

Therefore,

$$
|A| = m\left(h + \frac{c(m-1)}{2}\right). \tag{15}
$$

With the use of (15) it is not hard to prove, by induction on k, the following.

Lemma 8. Let A_1, \ldots, A_k be trapezoids of type $T_{\langle u_1, u_2 \rangle}(m_i, h_i, c)$ for some ordered base $\langle u_1, u_2 \rangle$, integers m_i and h_i , for each $1 \leq i \leq h$, and a common slope c. Then $A_1 + \cdots + A_k$ is a trapezoid of type $T_{\langle u_1, u_2 \rangle}(\sum_{i=1}^k m_i - (k-1), \sum_{i=1}^k h_i - (k-1), c).$

One of the key parts of the proof of Theorem [4](#page-1-4) was to generalize a beautiful lemma which was used to prove Theorem [1](#page-1-5) as well as the characterization of the extremal cases, see [\[10,](#page-5-6) [5\]](#page-5-7). For the sake of clarity, we present here only the statement for $k = 3$ and a sketch of its proof.

Lemma 9. Let I, J, K be nonempty finite subsets of \mathbb{R} with $min(|I|, |J|, |K|) \geq 2$. Let $a = \{a_i\}_I$, $b = \{b_j\}$ and $c = \{c_k\}_K$ sequences with $a_i, b_j, c_k > 0$ for $i \in I, j \in J$ and $k \in K$. For each $t \in I + J + K$, let $u_t(a, b, c) = max\{a_i + b_j + c_{k-i-j} : i \in I, j \in J, k-i-j \in K\}$. Ij

$$
\frac{1}{|I|} \sum_{i \in I} a_i + \frac{1}{|J|} \sum_{j \in J} b_j + \frac{1}{|K|} \sum_{k \in K} c_k \le \frac{1}{|I| + |J| + |K| - 2} \sum_{t \in I + J + K} u_t(a, b, c).
$$
 (16)

If the equality holds then I, J and K are arithmetic progressions with common difference and the sequences a, b and c are also arithmetic progressions with common difference.

Proof. (sketch) For a sequence $\{x_i\}_{i\in L}$, denote by $\overline{x} = \frac{1}{|L|}$ $\frac{1}{|L|}\sum_{i\in L}x_i$ its average value. If $y=\{y_i\}_{i\in M}$ and $z = \{y_i\}_{i \in N}$ are also sequences, denote by $u^+(x, y, z)$ the subsequence of the $|L|+|M| + |N| - 2$ elements in the sequence $u(x, y, z) = \{u_t(x, y, z) : t \in L + M + N\}$ which is well-defined in view of Theorem [6.](#page-2-1) Let $d = \{u_t(b, c) : t \in J + K\}$. First we shall prove that $u(a, b, c) = u(a, d)$ and then we need to prove that $\overline{u^+(a, d^+)} \leq \overline{u^+(a, d)}$, which will lead us to show that

$$
\overline{u^+(a,b,c)} \le \left(\frac{1}{|I|+|J|+|K|-2}\right) \sum_{t \in I+J+K} u_t(a,b,c). \tag{17}
$$

From this position it is not hard to prove that

$$
\frac{1}{|I|} \sum_{i \in I} a_i + \frac{1}{|J|} \sum_{j \in J} b_j + \frac{1}{|K|} \sum_{k \in K} c_k \le \frac{1}{|I| + |J| + |K| - 2} \sum_{t \in I + J + K} u_t(a, b, c) \tag{18}
$$

Now, suppose that the equality holds if (16) , we can see that I, J and K are arithmetic progressions with common difference. From here, one has to work to show that actually, the sequences a, b and c are arithmetic progression with a common difference. \Box

To prove Theorem [4](#page-1-4) we define one set for each $1 \leq i \leq k$ as $I_i = \phi_{\langle \mathbf{u} \rangle}(A_i)$, and work to obtain the base $\langle u_1, u_2 \rangle$ and the parameters of the trapezoids in terms of the differences of the arithmetic progression given by Lemma [9.](#page-4-5)

References

- [1] B. Bollobás and I. Leader, *Sums in the grid*, Discrete Math. 162 (1996), 31-48.
- [2] G. A. Freiman, Foundations of a Structural Theory of Set Addition, Transl. Math. Monogr. 37 Amer. Math. Soc. (1973).
- [3] A. Mudgal, Difference sets in higher dimensions, Math. Proc. Cambridge Philos. Soc. 171 (2021), 467-480.
- [4] D. Conlon and J. Lim,, Difference sets in \mathbb{R}^d , prepint available at arXiv:2110.09053 [math.CO].
- [5] G. A. Freiman, D. Grynkiewicz, O. Serra, and Y.V. Stanchescu, Inverse additive problems for Minkowski sumsets I, Collectanea mathematica, 63(3) (2012), 261-286.
- [6] R. J. Gardner and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (2001), 3995-4024.
- [7] A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkhäuser (2009).
- [8] B. Green and T. Tao, Compressions, convex geometry and the Freiman-Bilu theorem, Q. J. Math. 57 (2006), 495-504.
- [9] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30 Springer (2013).
- [10] D. J. Grynkiewicz and O. Serra, Properties of two dimensional sets with small sumset, J. Combin. Theory Ser. A 117 (2010), 164-188.
- [11] M. Nathanson, Additive Number Theory, Graduate Texts in Mathematics 165 Springer (1996).
- [12] I. Z. Ruzsa, Sums of sets in several dimensions, Combinatorica 14 (1994), 485-490.
- [13] T. Tao and H. V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math. 105 Cambridge University Press (2006).