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Abstract

Let h ≥ 2 be an integer, u ∈ R2 \ {(0, 0)}, and A1, A2, . . . , Ah be nonempty finite subsets of R2.
For each i ∈ {1, 2, . . . , h}, denote by mi the number of lines parallel to the line generated by the
vector u that intersect Ai. We show that

|A1 +A2 + . . .+Ah| ≥

((
h∑

i=1

|Ai|
mi

)
− (h− 1)

)((
h∑

i=1

mi

)
− (h− 1)

)

generalizing a statement of D. J. Grynkiewicz and O. Serra for h = 2. We also characterize the
case of equality; that is, we describe the structure of finite 2-dimensional subsets of R2 which are
extremal with respect to the inequality above. This also generalizes a result of G. A Freiman, D.
Grynkiewicz, O. Serra and Y. V. Stanchescu.

1 Introduction

One of the most important problems in Additive Number Theory has been to determine nontrivial
lower bounds for the cardinality of A1 + A2 + . . . + Ah = {a1 + a2 + . . . + ah | ai ∈ Ai for each i ∈
{1, 2, . . . , h}}, where A1, A2, . . . , Ah are nonempty finite subsets of an abelian group G, see for instance
[2, 7, 9, 11, 12, 13]. Particularly, there is interesting recent progress concerning this problem in Rd. In
this work, we only focus our attention in R2. Given u ∈ R2 \ {(0, 0)} and A1, A2, . . . , Ah nonempty
finite subsets of R2, we give a lower bound of |A1 + A2 + . . . + Ah| in terms of the number of lines
parallel to the line generated by u which intersect Ai, for each i ∈ {1, 2, . . . , h}. This was already
done for two sets (h = 2) by Grynkiewicz and Serra [10]. Moreover, Freiman, Grynkiewicz, Serra and
Stanchescu characterized the extremal 2-dimensional sets attaining such lower bound [5]. We generalize
both results for any integer h ≥ 2.

Given u ∈ R2, we denote by ⟨u⟩ the subspace (line) generated by u. Let ϕ⟨u⟩ : R2 → R2/⟨u⟩ the
natural projection modulo ⟨u⟩. For a finite subset A of R2, let ϕ⟨u⟩(A) = {ϕ⟨u⟩(a) |a ∈ A}. Thus, if
u ̸= (0, 0), |ϕ⟨u⟩(A)| is the number of lines parallel to ⟨u⟩ that intersect A. As we already mentioned in
the previous paragraph, Grynkiewicz and Serra were able to find a lower bound of |A+B| for nonempty
subsets A and B of R2 in terms of |ϕ⟨u⟩(A)| and |ϕ⟨u⟩(B)|. Here we give the precise statement.
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Theorem 1 (Grynkiewicz-Serra). Let A and B be nonempty finite subsets of R2. For every u ∈
R2 \ {(0, 0)},

|A+B| ≥
(
|A|
m

+
|B|
n

− 1

)
(m+ n− 1) , (1)

where m = |ϕ⟨u⟩(A)| and n = |ϕ⟨u⟩(B)|.

Proof. see [10, Thm. 1.3].

We generalize Theorem 1 for an arbitrary number of nonempty finite subsets of R2.

Theorem 2. Let h ≥ 2 be an integer, and let A1, . . . Ah be nonempty finite subsets of R2. For every
u ∈ R2 \ {(0, 0)},

|A1 +A2 + . . .+Ah| ≥

((
h∑

i=1

|Ai|
mi

)
− (h− 1)

)((
h∑

i=1

mi

)
− (h− 1)

)
(2)

where mi = |ϕ⟨u⟩(Ai)| for each i ∈ {1, 2, . . . , h}.

In order to characterized the extremal sets attaining equality in (2) we need to define some sets called
trapezoids. For the sake of clarity, we will use a definition that varies slightly from the one originally
presented in [5].

Definition 3. Let ⟨u1,u2⟩ be an ordered base of R2, and let m,h, c ∈ Z with (h− 1) + (m− 1)c ≥ 0.
We say that a finite nonempty 2-dimensional set A ⊂ R2 is a trapezoid of type T⟨u1,u2⟩(m,h, c) if there
is a vector v ∈ R2 such that

M⟨u1,u2⟩(A) + v = {(x, y) ∈ R2 | 0 ≤ y ≤ m− 1, 0 ≤ x ≤ (h− 1) + cy},

where M(u1,u2) : R2 → R2 is the linear mapping that leads the ordered base ⟨u1,u2⟩ to the canonical
ordered base ⟨e1, e2⟩.

We shall note that the example showed in [5] as a standard trapezoid T (6, 19, 2,−1) correspond to the
translation of any trapezoid of type T⟨(1,2),(0,1)⟩(19, 6,−3), see Figure 1. In general, a standard trapezoid
T (m,h, c, d) corresponds, after applying the linear transformation given by the matrix M⟨(1,d),(0,1)⟩ =(
−d 1
1 0

)
, to a translation of any trapezoid of type T⟨(1,d),(0,1)⟩(m,h, d− c).

Theorem 4. Let A1 . . . , Ak be nonempty finite 2-dimensional subsets of R2, and let u ∈ R2. If

|A1 + · · ·+Ak| =

(
k∑

i=1

(
|Ai|
mi

)
− (k − 1)

)(
k∑

i=1

(mi)− (k − 1)

)
, (3)

where mi = |ϕ⟨u⟩(Ai)| for 1 ≤ i ≤ k, then each Ai is a trapezoid of type T⟨u1,u2⟩(mi, hi, c) for some
ordered base ⟨u1,u2⟩, and some integers h1, . . . , hk, with common slope c.

The paper is organized as follows: Section 2 contains auxiliary results needed for proving Theorems
2 and 4. In particular, we present some properties of the technique known as (linear) compression.
The proof of Theorem 2 is completed in Section 3. To prove Theorem 4 is a bit more technical. We
present the strategy in Section 4.
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Figure 1: The standard trapezoid T (6, 19, 2,−1) (depicted on the left) given as an example in [5]
corresponds to the trapezoid of type T⟨(1,2),(0,1)⟩(6, 19,−3) translated to the origin (depicted on the
right). This can be seen by applying the linear transformation M⟨(1,2),(0,1)⟩ to T (6, 19, 2,−1).

2 Preliminaries

Let ⟨u1,u2⟩ be an ordered basis of R2. For a finite subset A ⊂ R2 and i ∈ {1, 2}, the linear compression
of A with respect to ui, denoted by Ci(A), is defined as follows. Take j ∈ {1, 2} \ {i} and let Ci(A) be
the set satisfying that for each x ∈ ⟨uj⟩,

ϕ⟨uj⟩ (Ci(A) ∩ (⟨ui⟩+ x)) = {0,ui, 2ui, · · · , (r − 1)ui}+ ⟨uj⟩,

where r = |A ∩ (⟨ui⟩+ x) | and, if r = 0, we consider Ci(A) ∩ (⟨ui⟩ + x) = ∅. The compression of A
with respect to the ordered basis ⟨u1,u2⟩ is then defined by C(A) = C2(C1(A)). Several properties
of compression can be found in [1, 6, 8, 10]; we just need a few of them. Observe that we have by
definition that

|A| = |C(A)|, (4)

and

|ϕ⟨u1⟩(A)| = |ϕ⟨u1⟩(C(A))|. (5)

One of the main properties of compression is the following.

Lemma 5. For any nonempty finite subsets A1, A2 ⊂ R2, and an ordered basis ⟨u1,u2⟩ of R2, it
happens that C(A1 +A2) ⊇ C(A1) +C(A2). In particular, |A1 +A2| ≥ |C(A1) +C(A2)|.

Proof. See [6, Lemma 3.4].

We will also make use of the following well known fact.

Theorem 6 (Folklore). Let A1, . . . , Ah be finite nonempty subsets of a torsion-free abelian group. Then

|A1 +A2 + . . .+Ah| ≥

(
h∑

i=1

|Ai|

)
− (h− 1),

and the equality is achieved when A1, A2, . . . , Ah are arithmetic progressions with the same common
difference.

Proof. See for instance [11, Theorem 1.4].
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Let A1, A2, . . . , Ah be nonempty finite subsets of R2 and, for each i ∈ {1, 2, . . . , h}, let C(Ai) be the
compression of Ai with respect to the ordered basis ⟨u1,u2⟩. The projection ϕ⟨u1⟩ is a linear mapping,
and the definition of C(Ai) implies that ϕ⟨u1⟩ (C(Ai)) is an arithmetic progression with difference u2

for each i ∈ {1, 2, . . . , h}. From these facts and Theorem 6, it follows that

∣∣ϕ⟨u1⟩ (C(A1) +C(A2) + . . .+C(Ah))
∣∣ = ( h∑

i=1

∣∣ϕ⟨u1⟩ (C(Ai))
∣∣)− (h− 1). (6)

In order to prove Theorem 2 , we prove the next inequality.

Lemma 7. Let A1, A2, . . . , Ah be nonempty finite subsets of R2, and let C(Ai) be the compression of
Ai with respect to the ordered basis ⟨u1,u2⟩. Then,

|A1 +A2 + . . .+Ah| ≥ |C(A1) +C(A2) + . . .+C(Ah)|. (7)

Proof. By induction on h taking A = A1 +A2 + . . .+Ah−1 and Ah, with the use of Lemma 5.

3 Proof of Theorem 2

Proof. We proceed by induction on h. If h = 2, the statement follows by Theorem 1. Consider now
the sets A = C(A1) +C(A2) + . . .+C(Ah−1) and B = C(Ah) where, for each i ∈ {1, 2, . . . , h}, C(Ai)
is the compression of Ai with respect to the ordered basis ⟨u1,u2⟩ = ⟨u,u⊥⟩. Set m = |ϕ⟨u⟩(A)| and
n = |ϕ⟨u⟩(B)|. Then

|A1 + . . .+Ah| ≥ |C(A1) + . . .+C(Ah−1) +C(Ah)|
(
by Lemma 7

)
= |A+B|

≥
(
|A|
m

+
|B|
n

− 1

)
(m+ n− 1) .

(
by Thm. 1

)
(8)

Hence, by definition and (5),

n = |ϕ⟨u⟩(B)| = |ϕ⟨u⟩(C(Ah))| = |ϕ⟨u⟩(Ah)| = mh, (9)

and

m = |ϕ⟨u⟩(A)| = |ϕ⟨u⟩(C(A1) +C(A2) + . . .+C(Ah−1))|

=

(
h−1∑
i=1

∣∣ϕ⟨u⟩ (C(Ai))
∣∣)− (h− 2)

(
by (6)

)
=

(
h−1∑
i=1

∣∣ϕ⟨u⟩ (Ai)
∣∣)− (h− 2)

(
by (5)

)
=

(
h−1∑
i=1

mi

)
− (h− 2). (10)

Thus (9) and (10) yield that

m+ n− 1 =

(
h−1∑
i=1

mi

)
− (h− 2) +mh − 1 =

(
h∑

i=1

mi

)
− (h− 1). (11)

By (4) we know |B| = |C(Ah)| = |Ah|, and so, by (9), we get

|B|
n

=
|Ah|
mh

. (12)
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Now, since (4) and (5) imply |C(Ai)| = |Ai| and |ϕ⟨u⟩(C(Ai))| = |ϕ⟨u⟩(Ai)| = mi, it follows by
definition and the induction hypothesis that

|A| = |C(A1) +C(A2) + . . .+C(Ah−1)| ≥

((
h−1∑
i=1

|Ai|
mi

)
− (h− 2)

)((
h−1∑
i=1

mi

)
− (h− 2)

)
. (13)

Thus, (10) and (13) imply

|A|
m

≥

(
h−1∑
i=1

|Ai|
mi

)
− (h− 2). (14)

Finally, substituying (11), (12) and (14) in (8), we obtain

|A1 + . . .+Ah| ≥
(
|A|
m

+
|B|
n

− 1

)
(m+ n− 1)

≥

((
h−1∑
i=1

|Ai|
mi

)
− (h− 2) +

|Ah|
mh

− 1

)((
h∑

i=1

mi

)
− (h− 1)

)
,

=

((
h∑

i=1

|Ai|
mi

)
− (h− 1)

)((
h∑

i=1

mi

)
− (h− 1)

)
,

and the prove is completed.

4 Sketch of the proof of Theorem 4

Observe that, if A is trapezoid of type T⟨u1,u2⟩(m,h, c) for some ordered base ⟨u1,u2⟩ of R2, and some
integers m,h and c satisfying (h− 1) + (m− 1)c ≥ 0 then, by definition, there is a vector v such that

M⟨u1,u2⟩A+ v =

m−1⋃
i=0

{(x, i)|0 ≤ x ≤ (h− 1) + ci}.

Therefore,

|A| = m

(
h+

c(m− 1)

2

)
. (15)

With the use of (15) it is not hard to prove, by induction on k, the following.

Lemma 8. Let A1, . . . , Ak be trapezoids of type T⟨u1,u2⟩(mi, hi, c) for some ordered base ⟨u1,u2⟩, inte-
gers mi and hi, for each 1 ≤ i ≤ h, and a common slope c. Then A1 + · · ·+ Ak is a trapezoid of type
T⟨u1,u2⟩(

∑k
i=1mi − (k − 1),

∑k
i=1 hi − (k − 1), c).

One of the key parts of the proof of Theorem 4 was to generalize a beautiful lemma which was used
to prove Theorem 1 as well as the characterization of the extremal cases, see [10, 5]. For the sake of
clarity, we present here only the statement for k = 3 and a sketch of its proof.

Lemma 9. Let I, J,K be nonempty finite subsets of R with min(|I|, |J |, |K|) ≥ 2. Let a = {ai}I ,
b = {bj}J and c = {ck}K sequences with ai, bj , ck > 0 for i ∈ I, j ∈ J and k ∈ K. For each
t ∈ I + J +K, let ut(a, b, c) = max{ai + bj + ck−i−j : i ∈ I, j ∈ J, k − i− j ∈ K}. If

1

|I|
∑
i∈I

ai +
1

|J |
∑
j∈J

bj +
1

|K|
∑
k∈K

ck ≤ 1

|I|+ |J |+ |K| − 2

∑
t∈I+J+K

ut(a, b, c). (16)

If the equality holds then I, J and K are arithmetic progressions with common difference and the
sequences a, b and c are also arithmetic progressions with common difference.
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Proof. (sketch) For a sequence {xi}i∈L, denote by x = 1
|L|
∑

i∈L xi its average value. If y = {yi}i∈M
and z = {yi}i∈N are also sequences, denote by u+(x, y, z) the subsequence of the |L|+|M | + |N | − 2
elements in the sequence u(x, y, z) = {ut(x, y, z) : t ∈ L + M + N} which is well-defined in view of
Theorem 6. Let d = {ut(b, c) : t ∈ J +K}. First we shall prove that u(a, b, c) = u(a, d) and then we
need to prove that u+(a, d+) ≤ u+(a, d), which will lead us to show that

u+(a, b, c) ≤
(

1

|I|+ |J |+ |K| − 2

) ∑
t∈I+J+K

ut(a, b, c). (17)

From this position it is not hard to prove that

1

|I|
∑
i∈I

ai +
1

|J |
∑
j∈J

bj +
1

|K|
∑
k∈K

ck ≤ 1

|I|+ |J |+ |K| − 2

∑
t∈I+J+K

ut(a, b, c) (18)

Now, suppose that the equality holds if (16), we can see that I, J and K are arithmetic progressions
with common difference. From here, one has to work to show that actually, the sequences a, b and c
are arithmetic progression with a common difference.

To prove Theorem 4 we define one set for each 1 ≤ i ≤ k as Ii = ϕ⟨u⟩(Ai), and work to obtain
the base ⟨u1,u2⟩ and the parameters of the trapezoids in terms of the differences of the arithmetic
progression given by Lemma 9.
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