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Abstract

A graph H is said to be common if the number of monochromatic labelled copies of H in a 2-
colouring of the edges of a large complete graph is asymptotically minimized by a random colouring.
It is well known that the disjoint union of two common graphs may be uncommon; e.g., K2 and
K3 are common, but their disjoint union is not. We investigate the commonality of disjoint unions
of multiple copies of K3 and K2. As a consequence of our results, we obtain an example of a pair
of uncommon graphs whose disjoint union is common. Our approach is to reduce the problem
of showing that certain disconnected graphs are common to a constrained optimization problem
in which the constraints are derived from supersaturation bounds related to Razborov’s Triangle
Density Theorem. We also improve bounds on the Ramsey multiplicity constant of a triangle with
a pendant edge and the disjoint union of K3 and K2.

1 Introduction

In one of the first applications of the probabilistic method, Erdős [6] showed that a random colouring of
the edges of a clique on (1− o(1))2−1/2e−1k2k/2 vertices with red and blue contains no monochromatic
complete graph on k vertices with positive probability; this implies a lower bound on the Ramsey
number of the complete graph Kk, i.e. the smallest N for which every 2-colouring of the edges of
KN contains a monochromatic Kk. To this day, Erdős’ bound has been improved only slightly by
Spencer [24]. One of the core themes in Ramsey theory is that random colourings tend to perform well
in avoiding certain monochromatic substructures.

This intuition extends to the closely related area of “Ramsey multiplicity” in which the goal is to
minimize the number of monochromatic labelled copies of a given graphH in a red/blue colouring of the
edges of KN asymptotically as N tends to infinity. A graph H is said to be common if this asymptotic
minimum is achieved by a sequence of random colourings. A famous result of Goodman [10] implies that
K3 is common (see Theorem 7). Inspired by this, Erdős [5] conjectured thatKk is common for all k and,
nearly two decades later, Burr and Rosta [4] conjectured that every graph H is common. Sidorenko [22]
observed that the paw graph P consisting of a triangle with a pendant edge is uncommon. Around
the same time, Thomason [25] showed that Kk is uncommon for all k ≥ 4; thus, the aforementioned
conjectures are both false. Later, Jagger, Sťov́ıček and Thomason [14] proved that every graph H
containing a K4 is uncommon. In particular, almost every graph is uncommon. In recent years, there
has been a steady flow of results proving that the members of certain families of graphs are common
or uncommon [16, 17, 11, 1, 2, 12, 15]. In spite of this, the task of classifying common graphs seems
hopelessly difficult.

The main goal of this paper is to provide a new approach for bounding the number of monochromatic
copies of certain disconnected graphs in a colouring of KN and to use it to obtain several new families
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of common graphs. Given graphs H1 and H2, let H1 ⊔H2 denote their disjoint union; also, for a graph
F and ℓ ≥ 1, let ℓ · F be the disjoint union of ℓ copies of F . The argument of Sidorenko [22] that the
paw graph is uncommon also shows that K3 ⊔ K2 is uncommon (with the same proof). Most of our
results focus on the commonality of unions of several copies of K3 and K2. Our first result is as follows.

Theorem 1. For 0 ≤ ℓ ≤ 2, the graph (2 ·K3) ⊔ (ℓ ·K2) is common.

We also show that this is best possible in the sense that (2 · K3) ⊔ (3 · K2) is uncommon; see
Proposition 10. Since K3 and K2 are both common, Sidorenko’s result [22] that K3 ⊔K2 is uncommon
tells us that the disjoint union of two common graphs can be uncommon. Using Theorem 1, we find
that the opposite phenomenon is also possible; the disjoint union of two uncommon graphs can be
common. In fact, the disjoint union of two copies of a single uncommon graph can be common.

Corollary 2. There exists an uncommon graph H such that H ⊔H is common.

Proof. Consider H = K3 ⊔K2. The fact that H is uncommon was shown by Sidorenko [22], and the
fact that H ⊔H is common follows from Theorem 1 with ℓ = 2.

We remark that our results also allow us to obtain new examples of graphs H1 and H2 such that
H1 is common, H2 is uncommon and H1 ⊔ H2 is common. However, the existence of such a pair of
graphs was already known; see [17, Subsection 1.1]. We also prove a general result on disjoint unions
of triangles and edges, provided that the number of triangles is at least three.

Theorem 3. For k ≥ 3 and 0 ≤ ℓ ≤ 5k/3(≈ 1.666k), the graph (k ·K3) ⊔ (ℓ ·K2) is common.

Theorem 4. For k ≥ 1 and ℓ = ⌈1.9665k⌉, the graph (k ·K3) ⊔ (ℓ ·K2) is uncommon.

2 Preliminary

Several of the results in this paper are best understood in the context of graph limits. A kernel is a
bounded measurable function U : [0, 1]2 → R such that U(x, y) = U(y, x) for all x, y ∈ [0, 1]. A graphon
is a kernel such that 0 ≤ W (x, y) ≤ 1 for all x, y ∈ [0, 1]. The set of all graphons is denoted W0. Given
a graph G, let v(G) := |V (G)| and e(G) := |E(G)|. A graph G is said to be empty if e(G) = 0. Each
graph G can be associated to a graphon WG by dividing [0, 1] into v(G) intervals I1, . . . , Iv(G) of equal
measure corresponding to the vertices of G and setting WG equal to 1 on Ii × Ij if the ith and jth
vertices are adjacent and 0 otherwise. The homomorphism density of a graph H in a kernel U is defined
by

t(H,U) :=

∫
[0,1]V (H)

∏
uv∈E(H)

W (xu, xv)dxV (H)

where xV (H) = (xv : v ∈ V (H)). We refer the reader to [19] for more background on graph limits. The
Ramsey multiplicity constant of a graph H is defined to be

c(H) := inf
W∈W0

(t(H,W ) + t(H, 1−W )).

In this language, a graph H is common if and only if

c(H) = 2(1/2)e(H). (1)

As stated above, K3 ⊔ K2 and the paw graph P are uncommon. We obtain, to our knowledge, the
tightest known upper bounds on the Ramsey multiplicity constants of these two graphs; for the former
graph, we also obtain a reasonably tight lower bound which is proven without the assistance of the flag
algebra method.

Theorem 5. 0.121423 < c(K3 ⊔K2) < 0.121450.
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Theorem 6. The paw graph P satisfies c(P ) < 0.121415.

Note that, for every graph H such that c(H) is currently known, either H is common or c(H) is
achieved by a “Turán graphon” WKk

for some k ≥ 3 [8, 13]. To our knowledge, Theorem 5 is the
closest that any result has come to determining c(H) for a graph H which does not fit into either of
these two categories. The lower bound in Theorem 5 can be improved by at least 0.022% using the
flag algebra method; however, such a proof would most likely be verifiable only with heavy computer
assistance, and is thus unlikely to provide much in terms of valuable insights. Several of the known
results on common graphs actually establish stronger inequalities than (1). Following [2], a non-empty
graph H is said to be strongly common if

t(H,W ) + t(H, 1−W ) ≥ t(K2,W )e(H) + t(K2, 1−W )e(H) (2)

for every graphon W . A simple application of Jensen’s Inequality tells us that every strongly common
graph is common. A classical example of a strongly common graph is K3; see Theorem 7. A non-empty
graph H is said to be Sidorenko if

t(H,W ) ≥ t(K2,W )e(H) (3)

for every graphon W . Clearly, every Sidorenko graph is strongly common which, in turn, implies
that every such graph is common. By taking W = WK2 , one can see that every Sidorenko graph
must be bipartite. Sidorenko’s Conjecture [23] famously states that every bipartite graph is Sidorenko.
Currently, every bipartite graph H which is known to be common is also known to be Sidorenko.
Also, the only known examples of strongly common graphs which are not Sidorenko are the odd
cycles [2, 10, 15].
Our strategy for obtaining new examples of common graphs relies on strong correlation inequalities,

such as (2) and (3). Given this, it is natural to wonder whether all common graphs are strongly
common; this question was raised in [2]. As it turns out, this is far from true. For example, K3 ⊔K3

is common but not strongly common, and there are many other examples as well.

3 Key Ideas

Our approach is to reduce the problem of showing that certain disconnected graphs are common to a
constrained optimization problem, in which the constraints are derived from supersaturation bounds
related to Razborov’s Triangle Density Theorem. For the purposes of proving the lower bound of
Theorem 5, it will be enough to use the following theorem which was first announced by Fisher [7]; as
mentioned in [21], the proof contained a hole that can be patched using a later result of [9]. A new
proof was found by Razborov [20] prior to proving the general Triangle Density Theorem in [21].

Theorem 7 (Goodman’s Theorem [10]). K3 is strongly common.

Theorem 8 (Fisher [7] and Goldwurm and Santini [9]; see also Razborov [20]). Every graphon W with
t(K2,W ) ≤ 2/3 satisfies

t(K3,W ) ≥ 1

9

(
−2

(
2 +

√
4− 6t(K2,W )

)
+ 3t(K2,W )

(
3 +

√
4− 6t(K2,W )

))
Theorem 9 (Bollobás [3]). Every graphon W satisfies

t(K3,W ) ≥ 4

3
t(K2,W )− 2

3
.

To prove Thoerem 4, the upper bound of Theorem 5 and Theorem 6, the graphons that we will
use are all of the same general form. For n ≥ 1, let △n be the set of all vectors z⃗ of length n with
non-negative entries that sum to one. Given z⃗ ∈ △n and an n× n symmetric matrix A with entries in
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[0, 1], let Wz⃗,A be defined as follows. First, divide [0, 1] into n intervals I1, . . . , In such that the measure
of Ii is equal to z⃗i. Next, for each 1 ≤ i, j ≤ n, define Wz⃗,A to be equal to Ai,j for all (x, y) ∈ Ii × Ij .
It is easily observed that, for any graph H,

t(H,Wz⃗,A) =
∑

f :V (H)→[n]

∏
v∈V (H)

z⃗f(v)
∏

uv∈E(H)

Af(u),f(v). (4)

Using this construction, we could prove Theorem 4. Let k ≥ 1 and ℓ = ⌈1.9665k⌉. We show that
H = (k ·K3) ⊔ (ℓ ·K2) is uncommon. Define α = ℓ/k and note that 1.9665 ≤ α ≤ 2. Let

p := 1− 2−1/(3+α).

We let W be the graphon Wz⃗,A where z⃗ = (1/2, 1/2) and A is a 2 × 2 matrix whose diagonal entries
are p and off-diagonal entries are 1.

Proposition 10. The graph (2 ·K3) ⊔ (3 ·K2) is uncommon

Proof. We prove that the graph H = (2 ·K3) ⊔ (3 ·K2) is uncommon. For z ∈ [0, 1/2] and y ∈ [0, 1],
we define Wz,y := Wz⃗,A where z⃗ = (1− 2z, z, z) ∈ △3 and A is the symmetric 3 × 3 matrix in which
A(1, 2) = A(1, 3) = 1, A(2, 3) = y and A(i, i) = 0 for 1 ≤ i ≤ 3. Setting z = 0.28 and y = 0.42 yields

h(z, y) = 0.00390226 < 2 ·
(
1
2

)9
, which completes the proof.

Proposition 11. (3 · P ) ⊔ (2 ·K2) is uncommon.

Proof. Let H = (3 ·P )⊔ (2 ·K2). Once again, we use the graphon Wz,y from the previous three proofs.
This time, we set z = 0.429919 and y = 0.43222. Thus, t(H,Wz,y) + t(H, 1 −Wz,y) < 0.000121856 <
2(1/2)14 and the result follows.

Using the same construction above with different values of y and z, we could get the upper bound
of Theorem 5 and Theorem 6
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[12] H. Hatami, J. Hladký, D. Krá̌l, S. Norine, and A. Razborov, Non-three-colourable common graphs
exist, Combin. Probab. Comput. 21 (2012), no. 5, 734–742.

[13] J. Hyde, J.-B. Lee, and J. A. Noel, Turán colourings in off-diagonal ramsey multiplicity, 2024,
E-print arXiv:2309.06959.
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