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Abstract

It is a notorious open question whether integer programs (IPs), with an integer coefficient matrix
M whose subdeterminants are all bounded by a constant ∆ in absolute value, can be solved in
polynomial time. We answer this question in the affirmative if we further require that, by removing
a constant number of rows and columns from M , one obtains a submatrix A that is the transpose
of a network matrix.

Our approach focuses on the case where A arises from M after removing k rows only, where k is
a constant. We achieve our result in two main steps, the first related to the theory of IPs and the
second related to graph minor theory.

First, we derive a strong proximity result for the case where A is a general totally unimodular
matrix: Given an optimal solution of the linear programming relaxation, an optimal solution to the
IP can be obtained by finding a constant number of augmentations by circuits of A.

Second, for the case where A is transpose of a network matrix, we reformulate the problem as a
maximum constrained integer potential problem on a graph G. We observe that if G is 2-connected,
then it has no rooted K2,t-minor for t = Ω(k∆). We leverage this to obtain a tree-decomposition of
G into highly structured graphs for which we can solve the problem locally. This allows us to solve
the global problem via dynamic programming.

1 Introduction

As for most computational problems that are NP-hard, the mere input size of an integer program
(IP) does not seem to capture its difficulty. Instead, several works have identified additional param-
eters that significantly influence the complexity of solving IPs. These include the number of integer
variables (Lenstra [LJ83], see also [Kan87, Dad12, RR23]), the number of inequalities for IPs in inequal-
ity form (Lenstra [LJ83]), the number of equations for IPs in equality form (Papadimitriou [Pap81],
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see also [EW19]), and features capturing the block structure of coefficient matrices (see for instance
[CEH+21, CEP+21, EHK+22, BKK+24, CKL+24]).

Another parameter that has received particular interest is the largest subdeterminant of the coefficient
matrix, which already appears in several works concerning the complexity of linear programs (LPs) and
the geometry of their underlying polyhedra [Tar86, DF94, BDSE+14, EV17] as well as proximity results
relating optimal solutions of IPs and their LP relaxations [CGST86, PWW20, CKPW22]. Consider an
IP of the form

max {p⊺x : Mx ≤ b, x ∈ Zn} , (IP)

where M is an integer matrix that is totally ∆-modular, i.e., the determinants of square submatrices
of M are all in {−∆, . . . ,∆}. It is a basic fact that if M is totally unimodular (∆ = 1), then the
optimum value of (IP) is equal to the optimum value of its LP relaxation, implying that (IP) can be
solved in polynomial time. In a seminal paper by Artmann, Weismantel & Zenklusen [AWZ17], it is
shown that (IP) is still polynomial-time solvable if ∆ = 2, leading to the conjecture that this may
hold for every constant ∆. Recently, Fiorini, Joret, Yuditsky & Weltge [FJWY22] answered this in
the affirmative under the further restriction that M has only two nonzeros per row or column. In
particular, they showed that in this setting, (IP) can be reduced to the stable set problem in graphs
with bounded odd cycle packing number [BFMRV14, CFHW20, CFH+20].

We remark that the algorithm of [AWZ17] even applies to full column rank matrices M ∈ Zm×n for
which only the (n× n)-subdeterminants are required to be in {−∆, . . . ,∆} for ∆ = 2. Further results
supporting the conjecture have been recently obtained by Nägele, Santiago & Zenklusen [NSZ22] and
Nägele, Nöbel, Santiago & Zenklusen [NNSZ23] who considered the special case where all size-(n× n)
subdeterminants are in {−∆, 0,∆}. Interestingly, the results of [AWZ17, NSZ22, NNSZ23] are crucially
centered around a reformulation of (IP) where M becomes totally unimodular up to removing a constant
number of rows, where the additional constraints capture a constant number of congruency constraints.

In an effort to provide more evidence for the above conjecture, we initiate the study of IPs in which M
is totally ∆-modular and nearly totally unimodular, i.e., M becomes totally unimodular after removing
a constant number of rows and columns. Note that without requirements on the subdeterminants, IPs
with nearly totally unimodular coefficient matrices are still NP-hard. A famous example is the densest
k-subgraph problem [BCC+10, Man17], which can be seen as an IP defined by a totally unimodular
matrix with two extra rows (modeling a single equality constraint). A closely related example is the
partially ordered knapsack problem [KS02], which is also strongly NP-hard. Another famous example
is the exact matching (or red-blue matching) problem [Maa22, MVV87], for which no deterministic
polynomial-time algorithm is known (yet).

While settling the conjecture for nearly totally unimodular coefficient matrices still seems to be a
difficult undertaking, we can solve it for an important case: A celebrated result by Seymour [Sey80]
states that network matrices and their transposes are the main building blocks of totally unimodular
matrices. To any given (weakly) connected directed graph G and spanning tree T of G, one associates
the network matrix A ∈ {0,±1}E(T )×E(G−T ) such that Ae,(v,w) is equal to 1 if e is traversed in forward
direction on the unique v-w-path in T , is equal to −1 if it is traversed in backward direction, and is
equal to 0 otherwise. Our main result is the following.

Theorem 1. There is a strongly polynomial-time algorithm for solving the integer program (IP) for
the case where M is totally ∆-modular for some constant ∆ and becomes the transpose of a network
matrix after removing a constant number of rows and columns.

We achieve our result in two main steps, one related to the theory of integer programming and one
related to graph minor theory. For the first step, we derive a new proximity result on distances between
optimal solutions of IPs and their LP relaxations. A classic result of this type was established by Cook,
Gerards, Schrijver, & Tardos [CGST86] who showed that if M is totally ∆-modular, (IP) is feasible,
and x∗ is an optimal solution of the LP relaxation, then there exists an optimal solution z∗ of (IP)
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with ∥x∗ − z∗∥∞ ≤ n∆. It is still open whether this bound can be replaced with a function in ∆ only,
see [CKPW22].

A convenient consequence of this result is that, given x∗, one can efficiently enumerate the possible
values of z∗ for a constant number of variables. In particular, if we are given the integer program (IP)
with a totally ∆-modular coefficient matrix M that becomes totally unimodular after removing k rows
and ℓ columns, we may simply guess the values of the variables corresponding to the ℓ columns and
solve a smaller IP for each guess.

Thus, we may assume that M (is totally ∆-modular and) is of the form M =
[
A
W

]
, where A is totally

unimodular and W is an integer matrix with only k rows. For this class of IPs, we derive a considerably
strengthened proximity result: Given an optimal solution x∗ of the corresponding LP relaxation, there
is an optimal solution z∗ of (IP) where ∥x∗ − z∗∥∞ ≤ f(k,∆) for some function f that depends only
on k and ∆, again provided that (IP) is feasible. In fact, by bringing (IP) into equality form, we show
that x∗ can be rounded to a closeby integer point from which z∗ can be reached by adding a number
of conformal circuits of

[
A I

]
that can be bounded in terms of k and ∆ only. Moreover, we observe

that the fact that M is totally ∆-modular implies that every circuit c satisfies ∥Wc∥∞ ≤ ∆.

While these findings are valid for all totally unimodular matrices A, we will see that they can be
crucially exploited for the case where A is the transpose of a network matrix, which we refer to as
the cographic case. For these instances, it is convenient to reformulate the original problem (IP) as a
particular instance of a maximum constrained integer potential problem

max
{
p⊺y : ℓ(v, w) ≤ y(v) − y(w) ≤ u(v, w) for all (v, w) ∈ E(G), Wy ≤ d, y ∈ ZV (G)

}
, (MCIPP)

where G is a directed graph, p ∈ ZV (G), ℓ, u ∈ ZE(G), W ∈ Z[k]×V (G) and d ∈ Zk, and moreover
each row of p⊺ or W sums up to zero. Notice that the first constraints are still given by a totally
unimodular matrix, and hence we may regard Wy ≤ d as extra (or complicating) constraints. With
this reformulation, the circuits of

[
A I

]
turn into vertex subsets S ⊆ V (G) with the property that

both induced subgraphs G[S] and G[S] are (weakly) connected, where S := V (G) \ S. We call such
sets doubly connected sets or docsets. Using this notion, our previous findings translate to two strong
properties of the instances of (MCIPP) we have to solve: First, every feasible instance has an optimal
solution that is the sum of at most f(k,∆) incidence vectors χS ∈ {0, 1}V (G), where S is a docset.
Second, every docset S satisfies ∥WχS∥∞ ≤ ∆.

Referring to the vertices whose variables appear with a nonzero coefficient in at least one of the extra
constraints as roots, the second property above implies that roots cannot be arbitrarily distributed in
the input graph. Roughly speaking, by carefully exploiting the structure of the instance, we will be
able to guess y(v) for each root v. Note that once all of these variables are fixed, the resulting IP
becomes easy since its constraint matrix is totally unimodular. In fact, the guessing cannot be done for
the whole graph at once and we will have to do it locally, and then combine the local optimal solutions
via dynamic programming.

Our structural insights are based on the observation that our input graphs do not contain a rooted
K2,t-minor, where t = 4k∆+1, provided that they are 2-connected. Here, the minors of a rooted graph
(graph with a distinguished set of vertices called roots) are defined similarly as for usual graphs, with
two differences: whenever some edge e is contracted we declare the resulting vertex as a root if and
only if at least one of its ends is a root, and we have the possibility to remove a vertex from the set
of roots. A rooted K2,t is said to be properly rooted if each one of the t vertices in the “large” side is
a root. For the sake of simplicity, we say that a rooted graph contains a rooted K2,t-minor if it has a
rooted minor that is a properly rooted K2,t, see Figure 1.

Our main structural result is a decomposition theorem for rooted graphs without rooted K2,t-minor,
see Theorem 2 below. It relies partly on several works about the structure of graphs excluding a minor,
extending the original results of Robertson & Seymour within the graph minors project, more specif-
ically on works by Diestel, Kawarabayashi, Müller & Wollan [DiKMW12], Kawarabayashi, Thomas
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Figure 1: Subgraph containing a rooted K2,3-minor. Roots are indicated with the red squares. Con-
tracting all the edges in each of the five branch sets produces a properly rooted K2,3.

& Wollan [KTW20], and Thilikos & Wiederrecht [TW22]. Furthermore, we use results of Böhme &
Mohar [BM02] and Böhme, Kawarabayashi, Maharry & Mohar [BKMM08], to control the distribution
of the roots in surface-embedded rooted graphs without rooted K2,t-minors.

Our decomposition theorem is formulated in terms of a tree-decomposition of graph G. Recall that
a tree-decomposition is a pair (T,B) where T is a rooted tree (tree with a unique root node) and
B = {Bu : u ∈ V (T )} is a collection of vertex subsets of G, called bags, such that for every vertex v of
G the set of bags containing v induces a non-empty subtree of T , and for every edge e of G there is a
bag that contains both ends of e. We define the weak torso of a bag Bu as the graph obtained from
the induced subgraph G[Bu] by adding a clique on Bu ∩Bu′ for each node u′ ∈ V (T ) that is a child of
u. Having stated these definitions, we are ready to state the (simplified version of our) decomposition
theorem. See Figure 2 for an illustration.

Theorem 2 (simplified version). For every t ∈ Z≥1 there exists a constant ℓ = ℓ(t) such that every
3-connected rooted graph G without a rooted K2,t-minor admits a tree-decomposition (T,B), where
B = {Bu : u ∈ V (T )}, with the following properties:

(i) the bags Bu and Bu′ of two adjacent nodes u, u′ ∈ V (T ) have at most ℓ vertices in common, and

(ii) for every node u ∈ V (T ), all but at most ℓ children u′ ∈ V (T ) of u are leaves and the roots
contained in the corresponding bags Bu′ are all contained in bag Bu, and

(iii) every node u ∈ V (T ) satisfies one of the following:

(a) bag Bu has at most ℓ vertices, or

(b) u is a leaf and Bu has at most ℓ roots, all contained in the bag of the parent of u, or

(c) after removing at most ℓ vertices, the weak torso of Bu becomes a 3-connected rooted graph
that does not contain a rooted K2,t-minor and has an embedding in a surface of Euler genus
at most ℓ such that every face is bounded by a cycle, and all its roots can be covered by at
most ℓ facial cycles.

As we show, there is a polynomial-time algorithm that finds the tree-decomposition of Theorem 2
together with a polynomial-size collection Xu for each node u ∈ V (T ), containing all the possible
intersections of a docset of G with the roots contained in bag Bu. This yields an efficient dynamic pro-
gramming algorithm to solve the instances of (MCIPP) we are interested in, which proves Theorem 1.
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Figure 2: Illustrating the decomposition of Theorem 2. The decomposition tree T is shown on the left.
The weak torsos of the two bags Bu and Bu′ are shown on the right. The top one satisfies (iii).(c), and
the bottom one (iii).(b).
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