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1 Introduction

An important problem in algebraic graph theory is to decide whether a graph is determined by the
spectrum of its adjacency matrix (see the surveys [10, 11]). In 2003, van Dam and Haemers [10]
conjectured that almost all graphs are uniquely determined by their spectrum. While the conjecture is
still open, Brouwer and Spence [8] provided computational evidence by enumerating all graphs with up
to 12 vertices and observing a decline in the fraction of cospectral mates (non-isomorphic graphs with
the same spectrum) between 10 and 12 vertices. Recent work by Koval and Kwan [17] showed that an
exponential number of graphs is determined by its spectrum. On the other side, Haemers and Spence
[14] established an asymptotic lower bound for the number of cospectral mates. Their key ingredient
is the notion of switching.

A switching method is an operation on a graph that results in a graph with the same spectrum.
For such a method to work, the graph needs a special structure, called a switching set. This set of
vertices makes it possible to swap some of the edges while preserving the spectrum of the adjacency
matrix. While Godsil-McKay (GM) switching [13] is the oldest and most fruitful switching method in
the literature (see e.g. [2, 3, 4]), new switching methods have recently been presented in the literature,
most notably Wang-Qiu-Hu (WQH) switching [20] and Abiad-Haemers (AH) switching [4]. The latter
captures all level 2 switching methods, and is motivated by the results of Wang and Xu [21], who
suggested that almost all R-cospectral graphs (cospectral graphs with cospectral complements) can be
constructed using regular orthogonal matrices of level 2.

This work bridges a gap in the existing literature concerning the recently introduced switching
methods of level 2. In particular, we present a combinatorial description of AH-switching that is
more accessible than the algebraic description provided by Abiad and Haemers in [5]. We do this for
switching sets of sizes 6, 8 and 10. Moreover, we show that the asymptotic lower bound on cospectral
mates derived by Haemers and Spence [14] is tight for GM-switching. We also obtain analogous upper
and lower bounds on the number of cospectral mates obtained via WQH-switching.

2 Preliminaries

In this work, graphs are considered to be simple and loopless. The (adjacency) spectrum of a graph
is the multiset of eigenvalues of its adjacency matrix. Graphs are cospectral if they have the same
spectrum. Two graphs are said to be cospectral mates if they are cospectral and non-isomorphic. Let I
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denote the identity matrix and J the all-one matrix. Two graphs with adjacency matrices A and A′ are
called R-cospectral if A+rJ and A′+rJ are cospectral for every r ∈ R. An orthogonal matrix is regular
if it has a constant row sum. Johnson and Newman [16] showed that two graphs are R-cospectral if
and only if their adjacency matrices are conjugated with a regular orthogonal matrix.
The level of a matrix is the smallest positive integer ℓ such that ℓ times the matrix is an integral

matrix, or ∞ if it has irrational entries. A matrix is decomposable if it can be written as a non-
trivial block-diagonal matrix after a certain permutation of the rows and columns. Otherwise, it is
indecomposable.

3 Switching methods to construct cospectral graphs

The construction of cospectral graphs has multiple purposes: to disprove the conjecture stating that
almost all graphs can be characterized by their spectrum for certain graph classes (see e.g. [3, 12]),
to show which properties of a graph cannot be deduced from the spectrum (see e.g. [1, 7, 18]), or
to construct new strongly regular and distance-regular graphs (see e.g. [6, 19]), among others. In
what follows, we provide an overview of the existing switching methods, and present some new results
concerning AH-switching.

3.1 Godsil-McKay switching

The following method for finding cospectral graphs was introduced by Godsil and McKay [13] in 1982.

Theorem 1 (GM-switching [13]). Let Γ be a graph and let {C1, . . . , Ct, D} be a partition of its vertices
such that, for all i, j ∈ {1, . . . , t}:

(i) Every vertex in Ci has the same number of neighbours in Cj.

(ii) Every vertex in D has 0, 1
2 |Ci| or |Ci| neighbours in Ci.

For all i ∈ {1, . . . , t} and every v ∈ D that has exactly 1
2 |Ci| neighbours in Ci, swap the adjacencies

between v and Ci. The resulting graph is R-cospectral with Γ.

The GM-switching operation corresponds to a conjugation of the adjacency matrix with the orthog-
onal matrix diag(R1, . . . , Rt, I), where Ri equals the |Ci| × |Ci| matrix 2

|Ci|J − I. Note that any Ci of
order 2 only gives a permutation matrix and is therefore trivial. The simplest nontrivial case has one
switching block of size four. This case has actually been the most fruitful in the literature, see e.g.
[2, 3, 4]. Larger switching sets give more conditions on the graph, which intuitively explains the relative
effectiveness of small switching sets. In Section 4, we give an asymptotic formula for the number of
graphs with a switching set of size four. Note that the level of the corresponding matrix is 2 in that
case, and the lowest common multiple of 1

2 |Ci|, 1 ≤ i ≤ t, in general.

3.2 Wang-Qui-Hu switching

In 2019, Wang, Qiu and Hu [20] presented another switching method, which corresponds to a conju-
gation of the adjacency matrix with the orthogonal matrix diag(R1, . . . , Rt, I), where each Ri is of the
form

Ri =

(
I − 2

|Ci|J
2

|Ci|J
2

|Ci|J I − 2
|Ci|J

)
.

As illustrated in [3, 12, 15], WQH-switching is also a powerful tool for constructing cospectral graphs
in cases where GM-switching fails. In combinatorial terms, the method can be described as follows.

Theorem 2 (WQH-switching [20]). Let Γ be a graph and let {C(1)
1 , C

(2)
1 , . . . , C

(1)
t , C

(2)
t , D} be a partition

of its vertices such that, for all i, j ∈ {1, . . . , t}:
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(i) |C(1)
i | = |C(2)

i |.

(ii) The number

{
|N(v) ∩ C

(1)
j | − |N(v) ∩ C

(2)
j | if v ∈ C

(1)
i

|N(v) ∩ C
(2)
j | − |N(v) ∩ C

(1)
j | if v ∈ C

(2)
i

is the same for every v ∈ C
(1)
i ∪ C

(2)
i .

(iii) Every vertex in D has either:

(a) |C(1)
i | neighbours in C

(1)
i and 0 neighbours in C

(2)
i ,

(b) 0 neighbours in C
(1)
i and |C(2)

i | neighbours in C
(2)
i ,

(c) the same number of neighbours in C
(1)
i as in C

(2)
i .

For all i ∈ {1, . . . , t} and every v ∈ D for which (a) or (b) holds, swap the adjacencies between v and

C
(1)
i ∪ C

(2)
i . The resulting graph is R-cospectral with Γ.

If t = 1 and |C(1)
1 | = |C(2)

2 | = 2, then WQH-switching is equivalent to GM-switching on C
(1)
1 ∪ C

(2)
1 .

But in general, they are different operations. Note that the level of the corresponding matrix is equal
to the lowest common multiple of 1

2 |Ci|, 1 ≤ i ≤ t, just like for GM-switching.

3.3 Abiad-Haemers switching

In 2012, Abiad and Haemers [5] considered switching methods that correspond to a conjugation of
the adjacency matrix with a regular orthogonal matrix of level 2. In particular, these methods can be
used to construct R-cospectral graphs (see the characterization of R-cospectral graphs by Johnson and
Newman [16]). Their starting point is the following classification of indecomposable regular orthogonal
matrices of level 2, which follows from the classification of weighing matrices of weight 4 by Chan,
Rodger and Seberry [9] and has been restated by Wang and Xu [21] in the form below. Note that any
regular orthogonal matrix has row sum 1 or −1, but without loss of generality, we may assume the row
sum to be 1.

Theorem 3 ([9]). Up to a permutation of the rows and columns, an indecomposable regular orthogonal
matrix of level 2 and row sum 1 is one of the following:

(i) 1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (ii) 1
2



J O · · · · · · O Y
Y J O · · · · · · O
O Y J O · · · O

. . .
. . .

. . .
. . .

O · · · O Y J O
O · · · · · · O Y J

 ,

(iii) 1
2



−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1
1 0 1 0 0 −1 1
1 1 0 1 0 0 −1


, (iv) 1

2

 −I I I I
I −Z I Z
I Z −Z I
I I Z −Z

 ,

where I, J , O, Y = 2I − J and Z = J − I, are square matrices of order 2.

The matrix in Theorem 3(i) corresponds to GM-switching. The one in Theorem 3(ii) is an infinite
family of matrices of even order, starting from order 6. In the following, we focus on this infinite family.
The remaining matrices in Theorem 3(iii)-(iv) were studied by Abiad and Haemers in [5, Section 5 and
Section 6].
It was already noticed by Abiad and Haemers [5] that sometimes, the six vertex AH-switching can

be obtained by GM-switching twice. We make this notion concrete in the following new definition.
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Definition 4. Let Q be a regular orthogonal matrix of level 2 and let A be an adjacency matrix with
the property that QTAQ is again an adjacency matrix. Then A is called reducible with respect to Q
if there exist regular orthogonal matrices Q1 and Q2 of level 2 whose largest indecomposable block is
smaller than that of Q, such that Q = Q1Q2 and QT

1 BQ1 is also an adjacency matrix. Otherwise, it is
called irreducible.

In what follows, we describe only the irreducible adjacency matrices for the AH-switching set, since
the reducible ones can be obtained by repeated GM- and AH-switching on smaller sets.

3.3.1 Six vertex switching

We present a combinatorial description of the switching on 6 vertices that was established by Abiad
and Haemers [5, Section 4]. Recall that this switching corresponds to a conjugation of the adjacency
matrix with the matrix in Theorem 3(ii) of order 6.

Theorem 5 (AH6-switching). Let Γ be a graph and let {C1, C2, C3, D} be a partition of its vertices
such that:

(i) |C1| = |C2| = |C3| = 2.

(ii) Every vertex in D has the same number of neighbours in C1, C2 and C3 modulo 2.

(iii) The induced subgraph on C1 ∪ C2 ∪ C3 is
• • •

• • •
(in that order, from left to right).

Let π be the permutation on C1∪C2∪C3 that shifts the vertices cyclically to the right. For every v ∈ D
that has exactly one neighbour w in each Ci, replace each edge {v, w} by {v, π(w)}. Replace the induced

subgraph on C1 ∪ C2 ∪ C3 by
• • •

• • •
. The resulting graph is R-cospectral with Γ.

Among the seven possible adjacency matrices for an AH-switching set of size 6, obtained by Abiad
and Haemers in [5, Lemma 6], only two are irreducible. However, they are actually equivalent, and
correspond to the induced subgraph in the statement of Theorem 5. In other words:

Theorem 6. AH6-switching is the only switching that corresponds to a regular orthogonal matrix of
level 2 with one indecomposable block of size 6 and that cannot be obtained by repeated GM-switching.

3.3.2 Eight vertex switching

Surprisingly, all matrices that describe an AH-switching set of order 8 (corresponding to the matrix of
order 8 in the infinite family of Theorem 3(ii)) are reducible:

Theorem 7. Every switching that corresponds to a conjugation with the matrix 1
2

 J O O Y
Y J O O
O Y J O
O O Y J

 can be

obtained by repeated GM- and AH6-switching.

3.3.3 Ten vertex switching

In contrast with the eight vertex case, there are 3 · 210 = 3072 possibilities for an (irreducible) AH-
switching set of size 10.

Theorem 8 (AH10-switching). Let Γ be a graph and let {C1, C2, C3, C4, C5, D} be a partition of its
vertices such that:
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(i) |C1| = |C2| = |C3| = |C4| = |C5| = 2.

(ii) Every vertex in D has the same number of neighbours in C1, C2, C3, C4 and C5 modulo 2.

(iii) One of the following holds (vertices are ordered, from left to right):

(a) For every i ∈ Z/5Z, the induced subgraph on Ci ∪ Ci+1 is either
• •

• •
or

• •

• •
and the

induced subgraph on Ci ∪ Ci+2 is either
• •

• •
or

• •

• •
.

(b) For every i ∈ Z/5Z, the induced subgraph on Ci ∪ Ci+1 is either
• •

• •
or

• •

• •
and the

induced subgraph on Ci ∪ Ci+2 is either
• •

• •
or

• •

• •
.

(c) For every i ∈ Z/5Z, the induced subgraph on Ci ∪ Ci+1 is either
• •

• •
or

• •

• •
and the

induced subgraph on Ci ∪ Ci+2 is either
• •

• •
or

• •

• •
.

Let π be the permutation on C1∪· · ·∪C5 that shifts the vertices cyclically to the right. For every v /∈ C
that has exactly one neighbour w in each Ci, replace each edge {v, w} by {v, π(w)}. Replace the induced
subgraph on C1 ∪ · · · ∪ C5 by the unique graph such that, according to the cases above:

(a) For every i ∈ Z/5Z, the induced subgraph on Ci ∪ Ci+1 remains invariant, and the new induced
subgraph on Ci ∪ Ci+2 is the former induced subgraph on Ci ∪ Ci+3.

(b) For every i ∈ Z/5Z, the new induced subgraph on Ci ∪ Ci+1 is the former induced subgraph on
Ci+1∪Ci+2 and the new induced subgraph on Ci∪Ci+2 is the former induced subgraph on Ci∪Ci+3.

(c) For every i ∈ Z/5Z, the new induced subgraph on Ci ∪ Ci+1 is the former induced subgraph on
Ci−1∪Ci+1 and the new induced subgraph on Ci∪Ci+2 is the former induced subgraph on Ci+1∪Ci+2.

The resulting graph is R-cospectral with Γ.

Similar to the six vertex case, we have the following result:

Theorem 9. AH10-switching is the only switching that corresponds to a regular orthogonal matrix
of level 2 with one indecomposable block of size 10 and that cannot be obtained by repeated GM- and
AH6-switching.

4 Asymptotic bounds

Let gn denote the number of graphs on n (unlabelled) vertices. In 2005, Haemers and Spence [14]
established a lower bound on the number of graphs on n vertices that have a cospectral mate.

Theorem 10 ([14, Theorem 3]). There are at least n3gn−1(
1
24 − o(1)) graphs on n vertices with a

cospectral mate.

This bound was derived by counting the number of cospectral mates by GM-switching with respect
to a switching set of size 4. Therefore, it is also a lower bound on the number of graphs which have a
cospectral mate via GM-switching. From their proof, we can also deduce a matching upper bound.

Theorem 11. There are n3gn−1

(
1
24 + o(1)

)
non-isomorphic graphs on n vertices with a GM-switching

set of size 4.
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Analogous bounds can be obtained for WQH-switching. Intuitively, there are less graphs with a
WQH-switching set of size 6, because they require more conditions than a switching set of size 4.

Theorem 12. There are between

n4gn−2(
1

72
− o(1)) and n4gn−2(

11

8
)n−6(29 + o(1))

non-isomorphic graphs on n vertices with a cospectral mate that can be obtained via WQH-switching
on 6 vertices.
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