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Abstract

In this article we prove a Griesmer type bound for additive codes over finite fields. This new
bound gives an upper bound on the length of fractional maximum distance separable codes, codes
which attain the Singleton bound. We prove that this bound can be obtained in some cases, sur-
passing the length of the longest known codes in the non-fractional case. We also provide some
exhaustive computational results over small fields and dimensions.

1 Introduction

The full version of this work can be found in [1].
Let Fq denote the finite field with q elements. An additive code of length n over Fqh is a subset C

of Fn
qh

with the property that for all u, v ∈ C the sum u+ v ∈ C. It is easy to prove that an additive
code is linear over some subfield, which we will assume to be Fq. An additive code is linear over Fqh if
u ∈ C implies λu ∈ C for all u ∈ C and all λ ∈ Fqh .

We use the notation [n, r/h, d]hq code to denote an additive code of length n over Fqh , of size qr and
minimum distance d. For an additive code C, the minimum distance d is equal to the minimum weight,
so this is equivalent to saying that each non-zero vector in C has at least d non-zero coordinates. We
will be particularly interested in the case where r/h is not an integer, we will call these codes fractional
codes, and codes such that r/h ∈ N integral codes.

2 Griesmer bound for additive codes

The Griesmer bound [4] for linear codes states that, if there is a [n, k, d]q linear code then

n ⩾
k−1∑
j=0

⌈ d
qj
⌉.

This bound can be reformulated as n ⩾ k + d−m+
∑m−1

j=1 ⌈ d
qj
⌉, where we chose m ⩽ k − 1 such that

qm < d ⩽ qm+1, or m = k if qk < d. We prove that a similar but weaker bound holds for additive
codes over finite fields,

Theorem 1. If there is a [n, r/h, d]hq additive code then

n ⩾ ⌈r/h⌉+ d−m− 2 + ⌈ d

f(q,m)
⌉,

where r = (k − 1)h+ r0, 1 ⩽ r0 ⩽ h,

f(q,m) =
qmh+r0(qh − 1)

qmh+r0 − 1
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and 0 ⩽ m ⩽ k − 2 is such that

qmh+r0 < d ⩽ q(m+1)h+r0

or m = k − 2 if d > qr.

We will also show that simply replacing k by ⌈r/h⌉ or ⌊r/h⌋ in (2) does not lead to a valid bound for
additive codes by constructing additive codes that invalidate these natural generalisations. Furthermore
we will show that we can reach the bound given by Theorem 1.

An additive [n, r/h, d]hq code is equivalent to the following geometric structure. We define X to be
the set of n subspaces of dimension at most h− 1 in PG(r− 1, q) with the property that at most n− d
of the subspaces are contained in a hyperplane. This representation of additive codes allows us to look
at the codes geometrically, which is instrumental in a lot of the proofs and intuitions in this article.
This is especially true for constructions of additive codes and classifying their dual code.

3 Singleton bound for additive codes

We will be particularly interested in codes C which meet the Singleton bound

|C| ≤ qn−d+1,

for linear codes the Singleton bound can be reformulated as

k ⩽ n− d+ 1.

Codes which attain this bound are called maximum distance separable codes, or simply MDS codes.
MDS codes are an important class of codes, which are implemented in many applications where we can
allow q to be large.

The Griesmer bound gives two important bounds for linear MDS codes. These results are well-known,
but we list these as theorems since we will obtain similar bounds for additive MDS codes.

Theorem 2. If k ⩾ 2 and there is a [n, k, d]q linear MDS code then d ⩽ q and n ⩽ q + k − 1.

Theorem 3. If n ⩾ k + 2 and there is a [n, k, d]q linear MDS code then k ⩽ q − 1.

As observed in previous articles, [5, Theorem 10], the Singleton bound can be reformulated for
additive codes as

k = ⌈r/h⌉ ⩽ n− d+ 1,

since n and d are always integers. We call codes which attain this bound additive MDS codes. Inter-
estingly, the restrictions from the above theorems do not carry over to additive codes. We will provide
a version for these bounds for additive codes and examples which better these bounds.

From Theorem 1 we get the following theorem for additive MDS codes that is the equivalent to
Theorem 2.

Theorem 4. If there is an [n, r/h, d]hq additive MDS code then

d ⩽ qh − 1 +
qh − 1

qr0 − 1

and

n ⩽ k − 2 + qh +
qh − 1

qr0 − 1
,

where r = (k − 1)h+ r0 > h and 1 ⩽ r0 ⩽ h.
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In Theorem 2 we have that d ⩽ qh, so the bound in Theorem 4 is the same when r0 = h and slightly
weaker when r0 ̸= h. Furthermore notice a fractional additive MDS code n can be longer than the

linear code by a tail of qh−1
qr0−1 − 1. We also have a an equivalent result to Theorem 3 for additive codes

given by

Theorem 5. If there is an [n, r/h, d]hq additive MDS code C and n ⩾ ⌈r/h⌉+ 2 then

⌈r/h⌉ ⩽ qh − 1 + (r0 − h)
qh − qh−1

qh − 1
.

In the next theorem we construct some additive MDS codes which prove that the bound in Theorem 4
is attainable if r0 divides h and k = 2. Observe that Theorem 2 implies that for linear codes with
k = 2, n ⩽ qh + 1, so the following construction exceeds the bound of linear codes.

Theorem 6. If r0 divides h then there is a [n, 1 + (r0/h), n− 1]hq additive MDS code where

n = qh +
qh − 1

qr0 − 1
.

A similar construction can be used to prove that the bound in Theorem 4 is also attainable when
k = 3 and q = 2, given by

Theorem 7. There is a [2h+1, 2 + 1/h, 2h+1 − 2]h2 additive MDS code.

Although the codes constructed in Theorem 6 and Theorem 7 have very small rate, it is of interest
that their length is superior to that of their linear counterparts. In the article [1] we also classify
additive MDS codes over small fields and observe, once more, that there are additive MDS codes whose
length exceeds linear MDS codes.
In the previous two constructions, we have that k is small. In the following constructions, we look

at the other extreme, when d is small.

Theorem 8. Let π0 and π∞ be h dimensional subspace of F2h
q = π0⊕π∞. If there are k ri-dimensional

subspace πi (with ri < h) such that

πi ∩ πj = {0}

for all distinct i, j ∈ {0, 1 . . . , k,∞}, and with

k∑
i−1

ri = r,

then there exists an [⌈r/h⌉] + 2, r/h, 3]hq additive MDS code.

From Theorem 8 we get the following theorem, which implies that the bound in Theorem 5 is
atainable when r0 = h− 1, given by

Theorem 9. There exists an [⌈r/h⌉] + 2, r/h, 3]hq additive MDS code for all ⌈r/h⌉ ≤ qh − 1

4 The dual of an additive code

The dual of an additive [n, r/h, d]hq code C is defined by

C⊥ = {v ∈ Fn
qh | trqh 7→q(u · v) = 0, for all u ∈ C},

where trqh 7→q denotes the trace function from Fqh to Fq, and u · v denotes the euclidean inner product.
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Since an Fq-basis for C defines r equations for the Fq-subspace C⊥, the dual code is an additive
[n, n−r/h, d⊥]hq code. Note that as an Fq-vector space the vector space Fn

qh
has dimension hn implying

that |C⊥| = qnh−r.
Recall that in Section 2, we defined a set of subspaces X of PG(r − 1, q) from an additive code of

size qr. We say an additive code is full if all the elements of X are of rank h, i.e. projective (h − 1)-
dimensional subspaces of PG(r − 1, q) (and non-full otherwise). We can always extend the subspaces
of X so that they have rank r. This can be done arbitrarily without the minimum distance decreasing.
Thus, a non-full additive [n, r/h, d]hq code C can always be converted in a full additive [n, r/h,⩾ d]hq
code. Using the concept of full and non-full additive codes we get the following results.

Theorem 10. C is a non-full additive [n, r/h, d]hq code if and only if C⊥ is an additive [n, n− r/h, 1]hq
code.

Theorem 11. C is a full additive [n, r/h, d]hq code with d ⩾ 2 if and only if C⊥ is a full additive

[n, r/h, d⊥]hq code with d⊥ ⩾ 2.

Theorem 12. A fractional sub-code of a linear code C is non-full.

For linear codes we have that that the dual of an MDS code is also MDS. For additive codes the
following result from [3, Theorem 4.3] (see also [6, Theorem 3.3]) classifies a group of additive MDS
codes with a dual that is also MDS.

Theorem 13. The dual of an integral additive MDS code is an additive MDS code.

In the fractional case, as pointed out in [6, Example 3.1] the dual of a fractional MDS code is not
necessarily MDS. Here, we give a precise condition on when the dual of a fracitonal MDS code is also
MDS,
Let J be a subset of {1, . . . , n}. The projection of an additive code C at J is

C/J = {u ∈ C | uj = 0, for all j ∈ J}.

Geometrically, the code C/J can be obtained from the set X in the following way. Let XJ be the set of
subspaces corresponding to the coordinates of J . By projecting from the subspace Σ spanned by XJ ,
we obtain a set of n − |J | subspaces X/J which are the subspaces of X \ XJ projected from Σ. Note
that the operation of projection of a code is also known as shortening a code.
We say a projection is non-obliterating if the dimension of C/J is at least h, i.e. |C/J | ⩾ qh. Note

that an obliterating projection always yields a non-full additive code.

Theorem 14. Let C be an additive MDS code. The dual code C⊥ is an additive full MDS code if and
only if every non-obliterating projection of C is full.

We can now improve on our bound for n in the case that the MDS code is non-full.

Theorem 15. If there is a non-full [n, r/h, d]hq additive MDS code then

n ⩽ qh + k − 1 +
qh − qr0+1

qr0 − 1
,

where r = (k − 1)h+ r0 > h and 1 ⩽ r0 ⩽ h.
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