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Abstract

In this talk we present families of quasi-cyclic LDPC codes derived from the quasi-cyclic repre-
sentation of the point-line incidence matrix of the classical finite generalised quadrangles. We detail
how to explicitly calculate quasi-cyclic generator and parity check matrices for classical finite gen-
eralised quadrangles codes of length up to 400000. These codes cover a wide range of transmission
rates, are easy and fast to implement and perform close to Shannon’s limit.

1 Introduction

In many modern communication systems Low Density Parity Check (LDPC) codes are used. LDPC
codes are those codes for which the number of ones in the check matrix is very small compared to the
size of the matrix. A quasi-cyclic LDPC check matrix H can be described by a block size b, sometimes
called the lifting degree or lifting factor, and a (m/b) × (n/b) matrix Hrep, whose entries are subsets
Hij of {1, . . . , b}, where i ∈ {1, . . . , (m/b)} and j ∈ {1, . . . , (n/b)}. Typically the subset Hij is empty
which corresponds to the b×b zero matrix in H in the (i, j) cell. A singleton subset Hij = {r} indicates
that in the (i, j) cell we have a copy of the b× b identity matrix shifted r bits (cyclically) to the right.
A larger subset will involve a superposition of such shifts of the identity matrix. This representation
of the quasi-cyclic LDPC check matrix H allows one to implement decoding algorithms, such as the
sum-product algorithm, in an efficient manner.

The Tanner graph Γ is the bipartite graph with stable sets of size m and n, where there is a
correspondence between the edges in Γ and a one entry in the matrix H. The decoding algorithms
mentioned in the previous paragraph work well if the girth of Γ, the length of the shortest cycle, is
large, and decode quickly if Γ has low diameter [6]. The diameter is the maximum distance between
any two vertices. These conflicting objectives are optimised when the girth is twice the diameter. The
graphs Γ which achieve this bound are the incidence matrices H of a generalised polygon. The rows of
H are indexed by the points of the polygon and the columns are indexed by the lines, or vice-versa,
where there is a one entry in the matrix H if and only if the point indexing the column and the line
indexing the row are incident in the geometry. Finite generalised polygons have diameter 3, 4, 6 or
8, see [3], and are respectively called, projective planes, generalised quadrangles, generalised hexagons
and generalised octagons. The LDPC code used in IEEE 802.3 standard (2048,1723) LDPC code for
the 10-G Base-T Ethernet, is a quasi-cyclic LDPC code from an affine plane over F32 (a projective
plane over the field of 32 elements with a line deleted) which has block size b = 64, length n = 2048

∗The full version of this work can be found in [1] and [2]. This research is supported by the Spanish Ministry of Science,
Innovation and Universities grant PID2020-113082GB-I00 funded by MICIU/AEI/10.13039/501100011033.

†Email: simeon.michael.ball@upc.edu.
‡Email: tomaso@uci.edu.



Discrete Mathematics Days, Alcalá de Henares, July 3-5, 2024

and dimension k = 1723, see [7, Example 10.5]. The LDPC code used in the NASA Landsat Data
Continuation is a quasi-cyclic LDPC code from a 3-dimensional affine space (a projective space with a
plane deleted) which has block size b = 511, length n = 8176 = 16b and dimension k = 7154 = 14b, see
[7, Example 10.10]. In this talk, we will describe how to efficiently employ quasi-cyclic LDPC codes
derived from classical generalised quadrangles. These codes are fast and efficient, can be extremely
long, and perform favourably compared to commercially used codes with similar parameters.

2 Quasi cyclic generator and check matrices

It was proven in [5] that the classical generalised quadrangles, of which there are six types, have a quasi-
cyclic representation. However, up until now, no description of these quasi-cyclic representations was
known. Here, we detail a simple, explicit description of a quasi-cyclic representation for all the classical
generalised quadrangles. Using this representation, we describe how to employ the corresponding quasi-
cyclic LDPC code in an efficient manner. In four of the six types, we do not take the entire quadrangle
but a carefully chosen large sub-structure, which allows us to increase the size of the blocks b. It is
advantageous to have a large block size since this allows the implementation of significantly longer
codes. As evidenced in the proof of Shannon’s theorem, the implementation of long codes brings the
performance of the code close to Shannon’s limit.

Once we have described how to construct the quasi-cyclic representation of the check matrix H in
a purely algebraic manner, we can compute H for classical generalised quadrangles LDPC codes of
length up to 400000. These computations were performed on a standard laptop and one can compute
quasi-cyclic check matrices and generator matrices for longer codes with more computational power.
The complexity of these computations for each quadrangle is detailed in Table 1.

Let C denote the binary linear code whose check matrix is H. We shall refer to C as the full code.
Efficient encoding can be implemented if one can find a generator matrix for the code in quasi-cyclic
form, see [4]. However, such a generator matrix for the full code C does not generally exist, so we take
a large subcode C ′ of C for which there is a generator matrix G in quasi-cyclic form. We will call C ′

the implementable code. A k × n generator matrix is in standard form if it has k × k submatrix which
is an identity matrix. For each quadrangle and each q, we compute a generator matrix G in standard
quasi-cyclic form for the implementable code C ′. Note that H is also a check matrix for C ′. The matrix
G can be described by a (k/b)× ((n− k)/b) matrix Prep, where the (i, j) entry of Prep is Pij , a vector
of {0, 1}b. Replacing each first row, with the full circulant b× b matrix one obtains a matrix P, where

G = (P | id). (1)

Here, id denotes the k × k identity matrix.

Given the matrix Prep, a shift-register-adder-accumulator (SRAA) circuit with a b-bit feedback shift
register can be implemented to calculate each block of b parity check bits of the encoded codeword,
see [4, Figure 1]. In series, this gives an encoding circuit of (n − k)/b SRAA circuits with a total of
2(n− k) flip-flops, n− k AND gates, and n− k two-input XOR gates. The encoding is completed in a
time proportional to n−k, see [4, Figure 2]. An encoder which completes in n−k clock cycles and k/b
feedback shift registers, each with b flip-flops can be implemented when the circuits are put in parallel,
see [4, Figure 3].

Thus, we have an efficient encoding and decoding of very long quasi-cyclic LDPC codes whose
performance is close to Shannon’s limit.

In the talk we will give a simple algebraic description of the quasi-cyclic representations which allow
the construction of Hrep for codes of extraordinary length. In some cases it is feasible to calculate Hrep

for codes of length 107. One can calculate Prep, and thus an explicit generator matrix in standard
quasi-cyclic form for codes of length up to 400000 and transmission rates covering a wide spectrum of
possible rates.
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increased approx complex complex
Code block block length -ity -ity min. approx.

size b size n Hrep Prep dist. rate

W (3, q) q2 + 1 q2 + 1 (q even) q3 O(q4) O(q9) > 2q 1− q−0.286 (q even)
1
2
(q2 + 1) (q odd) 0.5 (q odd)

W (3, q) q2 + 1 q2 + 1 (q even) q3 O(q4) O(q9) > 2q 1− q−0.286 (q even)
dual 1

2
(q2 + 1) (q odd) 0.5 (q odd)

Q(5, q) q3 + 1 q2 − q + 1 (q = 0, 1 mod 3) q5 O(q6) O(q13) > 2q 1− q−1

1
3
(q2 − q + 1) (q = 2 mod 3)

Q(5, q) q3 + 1 q2 − q + 1 (q = 0, 1 mod 3) q4 O(q6) O(q14) > q3 q−1

dual 1
3
(q2 − q + 1) (q = 2 mod 3)

H(4, q2) q5+1
q+1

q5+1
q+1

q8 O(q11) O(q22) > 2q2 1− q−1

H(4, q2) q5+1
q+1

q5+1
q+1

q7 O(q11) O(q23) > q5 q−1

dual

Table 1: The block size, length, and complexity of constructing Hrep and Prep.

3 Quasi-cyclic LDPC codes from classical generalised quadrangles.

Although there are six types of classical generalised quadrangles, these come in pairs, where one is the
dual of the other. To obtain the dual quadrangle one switches the role of the points and the lines. In
practical terms this is achieved by replacing the check matrix H by its transpose. Thus, we only need
to describe how to construct H for three of the six types. These are labelled in Table 1 as W (3, q) (the
symplectic quadrangle), Q(5, q) (the elliptic quadrangle) and H(4, q2) (the Hermitian quadrangle).

We will describe how to find these quasi-cyclic representations by consider the geometries as subsets
of certain field extensions. This will lead us to increased block sizes which are detailed in Table 1. I will
also present data on how these codes perform with respect to Shannon’s bound. It is not possible to
simulate performance of codes of very long length without using a field programmable gate array. The
very longest codes, for example the quasi-cyclic LDPC codes arising from Q(5,13) with n = 371462
and rate R = 0.9172 were implemented using a field programmable gate array. It was seen empirically
that these codes work exceedingly well with low complexity decoding algorithms which require just a
few iterations. This indicates that they may have a use in storing large amounts of data, where fast
and reliable decoding can be employed on retrieval.
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