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Abstract

Let p be a prime, let 1 ≤ t < d < p be integers, and let S be a non-empty subset of Fp. We
establish that if a polynomial P : Fn

p → Fp with degree d is such that the image P (Sn) does not
contain the full image A(Fp) of any non-constant polynomial A : Fp → Fp with degree at most t,
then P coincides on Sn with a polynomial that in particular has bounded degree-bd/(t + 1)c-rank
in the sense of Green and Tao. Similarly, we prove that if the assumption holds even for t = d, then
P coincides on Sn with a polynomial determined by a bounded number of coordinates.

Throughout this paper, the letter n will always denote a positive integer, and all our statements will
be uniform in n. A full version of the present paper may be found at [7].

1 Degree ranks and ranges of polynomials

A landmark result of Green and Tao proved in 2007 [3] states that over a finite prime field Fp for some
prime p, a multivariate polynomial with degree 1 ≤ d < p that is not approximately equidistributed
can be expressed as a function of a bounded number of polynomials each with degree at most d − 1.
More formally, we have the following statement.

Theorem 1 ([3], Theorem 1.7). Let p be a prime, and let 1 ≤ d < p be an integer. Then there
exists a function Kp,d : (0, 1] → N such that for every ε > 0, if P : Fn

p → Fp is a polynomial with

degree d satisfying |Ex∈Fn
p
ω
sP (x)
p | ≥ ε for some s ∈ F∗p, then there exist k ≤ Kp,d(ε), polynomials

P1, . . . , Pk : Fn
p → Fp with degree at most d− 1 and a function F : Fk

p → Fp satisfying

P = F (P1, . . . , Pk).

It has been known since at least the works of Janzer [5] and Milićević [9] that the conclusion can be
made qualitatively more precise. Before stating this strengthening, let us define a notion of degree-d
rank for polynomials.

Definition 2. Let F be a field, and let P : Fn → F be a polynomial. Let d ≥ 1 be an integer.
We say that a polynomial P has degree-d rank at most 1 if we can write P as a product of polynomials

each with degree at most d.
The degree-d rank of P is defined to be the smallest nonnegative integer k such that there exist

polynomials P1, . . . , Pk each with degree-d rank at most 1, with degree at most the degree of P , and
satisfying

P = P1 + · · ·+ Pk.

We denote this quantity by rkd P .

∗The full version of this work can be found in [7].
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The zero polynomial in particular has degree-d rank equal to 0 for all d, and constant polynomials
have degree-d rank at most 1 for all d.

We define this notion of degree-d rank in this way as doing so will be convenient for us, but it is worth
pointing out that in the original paper [3] of Green and Tao, the notion referred to as the degree-d
rank was slightly different: for instance the degree-(d− 1) rank was the largest possible k in Theorem
1. Nonetheless, it follows immediately from the definitions that for every polynomial P : Fn

p → Fp and
every positive integer d, the degree-d rank of P in the sense of Green and Tao is at most d times the
degree-d rank of P in our sense. Therefore, proving that a polynomial has bounded degree-d rank in
our sense implies showing that it has bounded degree-d rank in the sense of Green and Tao.

The main qualitative refinement shown in the papers of Janzer [5] and Milićević [9] is that there
exists some function Hp,d : (0, 1] → N such that under the assumptions of Theorem 1, we can find
k ≤ Hp,d(ε) and polynomials Q1, R1, . . . , Qk, Rk satisfying

degQi,degRi ≤ d− 1 and degQi + degRi ≤ d

for each i ∈ [k] and such that
P = Q1R1 + · · ·+QkRk.

In other words, it was shown that
rkd−1 P ≤ Hp,d(ε).

This is a bound on the degree-(d − 1) rank of P , and the numerous developments which arose out of
Theorem 1 have to our knowledge entirely or almost entirely focused on the degree-(d − 1) rank of
P : some extended the range of validity of the results (Kaufman and Lovett [8], Bhowmick and Lovett
[2]), and others improved the quantitative bounds on the degree-(d − 1) rank, through the closely
related question of comparing the partition rank to the analytic rank of tensors (Janzer [5], Milićević
[9], Adiprasito, Kazhdan and Ziegler [1], Moshkovitz and Cohen [10], [11], Moshkovitz and Zhu [12]).

For the purposes of studying approximate equidistribution of polynomials this is unsurprising, since
the notion of degree-(d− 1) rank is indeed by far the most relevant: for instance a random polynomial
of the type

x1Q(x2, . . . , xn)

with degQ = d− 1 has high degree-(d− 2) rank but is nonetheless not approximately equidistributed,
since the probability that it takes the value 0 is approximately 2/p− 1/p2 > 1/p.

Rather than focus on the fact that for a degree-d polynomial, lack of equidistribution implies bounded
degree-(d− 1) rank, we may ask for analogues of this statement involving much stronger properties in
the assumption and in the conclusion. Correspondingly, the main motivations of this paper are twofold.
In one direction, we ask what can be deduced about polynomials for which we know much more than
lack of equidistribution. What can we say if we know that a polynomial does not take every value of
Fp, or has a smaller range still, in a sense to be made precise ? In the other direction, we can ask,
for a fixed integer 1 ≤ e ≤ d − 1, whether there are any properties of the distribution of the values
of a polynomial which would guarantee that its degree-e rank is bounded above. We will contribute
to both directions simultaneously, by showing that if a polynomial P does not have full range, then it
must have bounded degree-e rank, for some integer e that is determined by the degree of P and by the
smallest degree of a non-constant one-variable polynomial that has a range contained in the range of
P .

Theorem 3. Let p be a prime, and let 1 ≤ t ≤ d < p be integers. There exists a positive integer
γ(p, d, t) such that the following holds. Let P : Fn

p → Fp be a polynomial with degree at most d. Assume
that the image P (Fn

p ) does not contain the image of Fp by any non-constant polynomial Fp → Fp with
degree at most t.

1. If t ≤ d− 1, then P has degree-bd/(t+ 1)c-rank at most γ(p, d, t).
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2. If t = d then P is a constant polynomial.

The value bd/(t+ 1)c in the degree of the rank in Theorem 3 is optimal in general, as the following
example shows.

Example 4. Let p be a prime, let 1 ≤ d < p be an integer, let t, u ≥ 1 be integers such that tu ≤ d. If
Q is a random polynomial Q : Fn

p → Fp with degree u, then Qt has degree at most d, the image Q(Fn
p )

is contained in the set {yt : y ∈ Fp} of t-th power residues mod-p, but the degree-(u − 1)-rank of P is
usually arbitrarily large as n tends to infinity, even if it is taken in the sense of Green and Tao.

The last part follows from a counting argument: as n tends to infinity there are pO(nu−1) polynomials
Fn
p → Fp with degree at most u − 1, so for every k ≥ 1, the number of polynomials of the type

F (P1, . . . , Pk) with P1, . . . , Pk with degree at most u − 1 and F : Fk
p → Fp a function is at most

pp
k
pO(knu−1) = pO(knu−1), whereas there are pΩ(knu) polynomials Fn

p → Fp with degree u and hence at
least 1/t times as many polynomials of the type Qt above.

Powers of polynomials are not the only simple examples of polynomials that do not have full range
in general. They can instead be viewed as a special case of a broader class of examples that arises from
composition with a one-variable polynomial.

Example 5. Let p be a prime, let 1 ≤ d < p be an integer, let t, u ≥ 1 be integers such that tu ≤ d.
If Q : Fn

p → Fp is a polynomial with degree u, and A : Fp → Fp is a polynomial with degree t, then the
polynomial A ◦Q has degree at most d, and the image A ◦Q(Fn

p ) is contained in the image A(Fp).

We stress that the main result from the approximate equidistribution regime will itself be an impor-
tant black box that we will use in our proof of Theorem 3.

2 Variables with restricted range

We shall in fact prove results in a more general setting than that of Theorem 3, where we allow the
assumption to be on the image P (Sn) for some non-empty subset S of Fp rather than on the whole
image P (Fn

p ). On a first reading the set S may be taken to be {0, 1}. In the setting of restrictions to
Sn, the approximate equidistribution statement was proved by Gowers and the author in [4]. Before
stating it, let us recall from that paper two points to be aware of regarding restrictions of polynomials
to Sn.

The first is that whereas an affine polynomial is either constant or perfectly equidistributed on Fn
p ,

there is already something to say about the distribution of an affine polynomial P on Sn for general
non-empty S: if S 6= Fp and P depends only on one coordinate, then P (Sn) is not even the whole of
Fp. As a simple Fourier argument however shows ([4], Proposition 2.2), an affine polynomial depending
on many coordinates is approximately equidistributed on Sn, provided that S contains at least two
elements. The second is that we may no longer hope to conclude in general that a polynomial with
degree d which is not approximately equidistributed on Sn must itself have bounded degree-(d − 1)
rank: for instance, the polynomial

n∑
i=1

x2
i − xi

has degree-1 rank equal to n, but only takes the value 0 on {0, 1}n and is in particular not approximately
equidistributed on {0, 1}n. Nonetheless, the zero polynomial, with which this polynomial coincides on
{0, 1}n, itself has degree-1 rank equal to 0.

These two remarks motivate an extension of Definition 2.

Definition 6. Let F be a field, and let P : Fn → F be a polynomial.
The degree-0 rank of P is defined to be the smallest nonnegative integer k such that we can write P

as a linear combination of at most k monomials. We denote this quantity by rk0 P .
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If d is a nonnegative integer and S is a non-empty subset of F then we define the degree-d rank of P
with respect to S as the smallest value of rkd(P−P0), where the minimum is taken over all polynomials
P0 with degree at most the degree of P and satisfying P0(Sn) = {0}. We denote this quantity by rkd,S P .

We now recall a slight weakening of the main result of [4], Theorem 1.4 from that paper. (Although
the full statement of that theorem is slightly more precise, the formulation below is slightly simpler to
use and suffices for the purposes of the present paper.)

Theorem 7. Let p be a prime, let 1 ≤ d < p be an integer, and let S be a non-empty subset of Fp.
There exists a function Hp,d,S : (0, 1] → N such that for every ε > 0, if P : Fn

p → Fp is a polynomial

with degree d satisfying |Ex∈Snω
sP (x)
p | ≥ ε for some s ∈ F∗p, then rkd−1,S P ≤ Hp,d,S(ε).

We note that if S has size 1, then Theorem 7 as well as many of the new results of the present paper
hold for immediate reasons: the set Sn then also has size 1, so every polynomial coincides on Sn with
a constant polynomial, so has degree-d rank at most 1 for every d.

When S is not the whole of Fp, one important difference between the sets Fn
p and Sn is that the

former is invariant under linear transformations, whereas the latter is not. We have already discussed
one effect on this: the fact that x1 does not take every value of Fp whereas x1+· · ·+xn is approximately
equidistributed for n large. The role of coordinates as opposed to general degree-1 polynomials will
manifest itself further in the proofs and in the main results of this paper. For this purpose let us make
one last definition.

Definition 8. Let p be a prime, and let P : Fn
p → Fp be a polynomial.

For each i ∈ [n], we say that P depends on xi if the coordinate xi arises in some monomial of P .
For k nonnegative integer, we will say that P is k-determined if it depends on at most k coordinates.

3 Statements of main results

Using Theorem 7 as a black box we will prove the following analogue of Theorem 3, where the assump-
tion on the image is now on P (Sn) rather than on P (Fn

p ). The following theorem is the main result
that we shall prove in the present paper.

Theorem 9. Let p be a prime, let 1 ≤ t ≤ d < p be integers and let S be a non-empty subset of
Fp. Then there exists a positive integer C(p, d, t) such that the following holds. Let P : Fn

p → Fp

be a polynomial with degree at most d. Assume that P (Sn) does not contain the image of Fp by any
non-constant polynomial Fp → Fp with degree at most t.

1. If t ≤ d− 1, then P coincides on Sn with a polynomial that has degree-bd/(t+ 1)c-rank at most
C(p, d, t) and has degree at most d.

2. If t = d then P coincides on Sn with a linear combination of at most C(p, d, t) monomials with
degrees at most d.

Equivalently, in both cases we have

rkb d
t+1
c,S P ≤ C(p, d, t).

The optimal bounds in Theorem 9 and in several of our other statements involving the set S may
depend on the choice of S. However, to avoid heavy notation we will at many places avoid making this
dependence explicit. (We may safely do so, since for each prime p there are only finitely many subsets
of Fp).

Let us look at the extreme cases of item 1 from Theorem 9, and at a situation where they are both
simultaneously realised.
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Corollary 10. Let p be a prime, let 1 ≤ t ≤ d < p be integers and let S be a non-empty subset
of Fp. Let P : Fn

p → Fp be a polynomial with degree at most d. Let C(i)(p, d) = C(p, d, 1) and let
C(ii)(p, d) = C(p, d, bd/2c).

(i) If P (Sn) 6= Fp then rkbd/2c,S P ≤ C(i)(p, d).

(ii) If P (Sn) does not contain the image of any non-constant polynomial Fp → Fp with degree at most
bd/2c then rk1,S P ≤ C(ii)(p, d).

(iii) If d = 3 and P (Sn) 6= Fp, then rk1,S P ≤ C(i)(p, 3) = C(ii)(p, 3).

Proof. Items (i) and (ii) follow from taking t = 1 and t = bd/2c in Theorem 9 respectively. Item (iii)
follows from either of the items (i) and (ii).

We now turn our attention to the case of degree-2 polynomials. Throughout the paper, we will write
Qp for the set {y2 : y ∈ Fp} of mod-p quadratic residues. Provided that p ≥ 3, this set has size p+1

2
and is in particular not the whole of Fp. We say that a subset of Fp is an affine translate of Qp if it
can be written as aQp + b for some a ∈ F∗p and some b ∈ Fp. In light of the preceding discussion we
can formulate three basic constructions of a degree-2 polynomial P such that P (Sn) 6= Fp.

(i) A polynomial of the type A ◦ L for some affine polynomial L : Fn
p → Fp and some degree-2

polynomial A : Fp → Fp. (Equivalently, the sum of a multiple of L2 and of a constant.)

(ii) A polynomial that depends only on a small number r < log p/ log |S| of coordinates, since P (Sn)
then necessarily has size at most |S|r.

(iii) A polynomial that vanishes on Sn and has degree at most 2.

The first item of the following result can be interpreted as a converse which says that every example
arises as a sum of these three examples, letting aside the value of the bound on the number of coordinates
in the second example.

Proposition 11. There exists an absolute constant κ > 0 such that the following holds. Let p be a
prime, and let S be a non-empty subset of Fp. Let P : Fn

p → Fp be a polynomial with degree 2.

1. If P (Sn) 6= Fp, then there exists an affine polynomial L : Fn
p → Fp, a degree-2 polynomial

A : Fp → Fp, and a κp15-determined polynomial J with degree at most 2 such that P coincides on
Sn with A ◦L+ J . (Equivalently, with AL2 + J for some A ∈ Fp, with J changed by a constant.)

2. If furthermore P (Sn) does not contain any affine translate of Qp, then P coincides on Sn with a
κp15-determined polynomial that has degree at most 2.

Item 1 from Proposition 11 is significantly stronger than the conclusion that item 1 from Theorem 9
gives in the corresponding case d = 2 and t = 1: the latter is merely that P has bounded degree-1 rank
with respect to S, which we already know by Theorem 7. The proof of Proposition 11 will instead use
different techniques which do not appear to generalise well to higher-degree polynomials.

In the more general case where P has general degree 2 ≤ d ≤ p − 1, one may ask whether just as
with item 1 from Proposition 11, it is the case that provided that P (Sn) 6= Fp we can always obtain a
decomposition P = A ◦Q+ J with Q : Fn

p → Fp, A : Fp → Fp polynomials satisfying degQdegA ≤ d,
degA ≥ 2 and with J a polynomial determined by a bounded number of coordinates and with degree
at most d. This is however not the case in general, as a wider class of examples comes in: for instance,
if d = p− 1, then the polynomial A : x→ xp−1 satisfies A(Fp) = {0, 1}, so if L1, . . . , Lp−2 are arbitrary
affine polynomials then the image of Fn

p by the polynomial

P = A ◦ L1 + · · ·+A ◦ Lp−2
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does not contain p − 1. For d = 2, such a situation cannot occur, because the Cauchy-Davenport
theorem, which will play some role in the proof of Proposition 11, shows that the sumset of any two
affine translates of Qp is the whole of Fp. (However, this is by no means the only or even the main
specificity of the case d = 2 that allows us to say more there than for general d < p.)

4 Techniques for the proof of Theorem 9

The basic strategy which we will use to prove Theorem 9 will be essentially as follows: because P has
degree d and is not approximately equidistributed, Theorem 7 shows that P coincides on Sn with some
polynomial with degree at most d and of the type

M ◦ (P1, . . . , Pk)

where k is bounded and M is some polynomial. One of the following is always true: either the polyno-
mials P1, . . . , Pk are approximately jointly equidistributed, in which case the image (P1, . . . , Pk)(Sn) is
the same as if the polynomials P1, . . . , Pk were jointly equidistributed, or they are not, in which case
at least one non-trivial linear combination of the polynomials P1, . . . , Pk has bounded degree-(d′ − 1)
rank with respect to S, where

d′ = max(degP1, . . . ,degPk),

and we may hence without loss of generality assume that P coincides on Sn with some polynomial
with degree at most d and of the type

M ′ ◦ (P1, . . . , Pk−1, Q1, . . . , Qk′)

where k′ is bounded, Q1, . . . , Qk′ are polynomials with degree strictly smaller than the degree of Pk,
and M ′ is some polynomial. This second step, in turn, can only be performed a bounded number of
times, which will conclude the argument.
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